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Transforming Undergraduate Engineering Education with 3D 

Virtual Laboratory 

 

Abstract 

We have been developing a unique set of 3D virtual laboratory experiments for use in an 

undergraduate materials science course, community college instructions, for demonstrations to 

the public and hands-on recruiting events for middle and high school students. The methodology 

and technology used is designed to make it possible to easily disseminate the laboratory to a 

large variety of institutions and locations. The fact that the laboratory is fully interactive makes 

for a realistic experience for the student. 

Introduction 

 

Despite a growing need for engineers in the workforce, there has not been a significant increase 

in engineering degrees awarded
1
. In fact, foreign-born engineers account for  a significant 

portion of engineering and technology companies established in the last decades; e.g. according 

to
2
, “companies founded by immigrants between 2006 and 2012 generated $63 billion in revenue 

and employed 560,000 workers in 2012." What makes the situation even worse is the so-called 

reverse brain drain; that is increasingly, foreign-born engineers are heading back home.  

Authorities estimate the number of foreign-born workers returning to India and China annually is 

in the tens of thousands
3,4

.  The Chinese Ministry of Education estimates the number of Chinese 

who returned to China last year was a record 134,800, up 25% from 2009
4
.  That makes the 

education of future US engineers and scientists a matter of national security.  

 

Engineering is viewed by many as a very demanding curriculum. Even when students begin their 

undergraduate education interested in STEM majors, the completion rate is less than half
5,6

. One 

of the primary reasons undergraduates choose to leave science and engineering majors is the loss 

of interest in the field
5
 prompted by inadequate motivation and background knowledge from 

school level. Among our sophomore engineering students, only about 50% are passing with the 

required C or better. Many of the unsuccessful students could become successful if teaching 

methods would better fit their different learning styles
7,8

.   

 

Students have different preferred learning styles
7-9

. These styles relate to the type of information 

accessed, the manner in which information is accessed (e.g., visual, verbal), the processes 

involved in accessing information (e.g. active, passive, reflective), and the sequence in which 

information is accessed. Understanding different learning styles can help instructors develop 

effective teaching strategies that target student diversities. Laboratory experiences can help 

address the needs of diverse learners as well as develop skills and emphasize the relevance and 

real-world application of course content
10

. Through engaging students in engineering 

investigations by means of a 3-D virtual laboratory, our goal has been to spark interest, 

excitement and the concomitant retention of engineering students
5
. 

 

Few engineering courses have a laboratory associated with them. One reason is that physical 

laboratory investigations are often limited by resources such as time and equipment. Further, the 

undergraduate engineering curriculum is already packed with credit hours. The virtual laboratory 
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addresses these issues. For example, an experiment that would take days (e.g., heat treatment) 

takes just a few minutes in the virtual laboratory (VL) environment. As Felder and Silverman
8
 

conclude, “the virtual laboratory is used as an alternative mechanism for achieving the same 

learning outcomes as in the corresponding physical laboratory.”  

 

Another challenge is providing laboratory experience to students enrolled in distance education. 

The virtual laboratory modules are portable, self-explanatory, and user-friendly. They enable 

distance education students to have lab experiences similar to those of their peers on campus
11

. 

They also address the needs of students with motion disability. Simulated experiments are more 

accessible to learners who often find it difficult or unsafe to use a real laboratory.  
 

An issue of major concern is the recruitment of female and minority students
12

.  Being portable, 

recruiting professors will be able to take the VL with them when going on recruiting trips. 

Steps in the Development of Virtual Laboratory 

 

The virtual laboratory development is composed of several phases as described in Figure 1.  These 

are: 

 

I. Development of lab modules 

II. Instructor training 

III. Dissemination  

IV. Assessment 

 

These tasks are interrelated and feedback was used regularly to improve the lab modules. 
 

 
 

Figure 1. Flow chart of the project. 

 

Virtual Laboratory Experiments 

 

The simulated experiments are designed to address the needs at the participating institutions, 

where the sophomore courses are taught as a large lecture section with no associated laboratory 

experiences. They are designed also with collaboration of other institutions around the country 

and around the world to make them adaptable by diverse populations.  

 

Preferred consideration for VL development was given to experiments that are of critical 

importance in the course (e.g. heat treatment of alloys). Other considerations include, for 

example, labs that require specialized, expensive, fragile, and potentially hazardous equipment, 

such as X-ray diffraction and electron microscopy.    
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The modules include:  X-ray diffraction, scanning electron microscopy, heat treatment of alloys 

(steel, aluminum, and brass), concrete testing (compressive strength and modulus of rupture), 

and asphalt (rotational viscosity, and mechanical testing). 

 

The guiding principles in the development of the virtual lab are: 

1. A laboratory that enables the student to 

conduct experiments without an immediate 

need for an instructor. Figure 2 shows a 

simulated hardness tester.  The instruction 

“balloon” directs the user to a step-by-step 

process using the red buttons.   

 

2. The simulated equipment provides a 

feeling of the “real thing” while clearly 

identifying components. For example, the 

cut-off disc (Figure 3a) has a vice to hold the 

sample, cooling water, light, and an abrasive 

disk. The sounds of the different phases of 

the cutting operations were recorded while 

operating a real machine and incorporated 

into the simulation.    

 
Figure 2 Simulated hardness tester.  The 

instructions are designed for independent use by 

the student, and can be run anywhere using a 

laptop.  

3. As in a real laboratory, 

experimental results have to be 

recorded. Tables for data collection 

will be uploaded on the computers.  

Repeated experiments will yield 

subtly different values in order to 

make the virtual results more realistic. 

 

4. To make the virtual lab user-

friendly, PowerPoint was developed 

that can be used to easily navigate 

through the virtual lab environment 

and link to resources.  

 

 

 

Figure 3. Virtual cut-

off machine: (a) 

Virtual machine, and 

(b) A real one. 

 

 

The PowerPoint files also include links to the theory behind the experiments and other useful 

information.  

 

Development of laboratory modules 

 

The laboratory modules have variety of characteristics that require different approaches to 

modeling. Still, all of them are interactive, making the student an active participant.  Some of the 

simulated experiments (such as cold-work of brass) were developed using EON Studio, state-of-

the-art VR development tool.  Others (e.g. the asphalt and concrete laboratories) were developed 

For a close view click on the Button 
1. Front View 
2. Right View (Check Load) 
3. Raise Sample (Click on Handle to Rotate) 
4. Adjust Big Dial to 0 (zero) 
5. Pull the Release the Lever 
6. Write down the Reading 
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using Unity3D, the most commonly used game design engine. For the X-ray diffraction 

experiment, LabVIEW with real video clips was used.  

 

All the modules are built to run on Windows computer with basic graphics capabilities to make 

dissemination to wide and diverse audience feasible.   

 

Creating the simulated experiments 

 

The first step in the process was to conduct physical experiments. This was done for two reasons: 

first to collect data to be used in the simulation; second, to record the procedure to aid the 

simulation developer. Next, models of the objects and devices were created using CAD software 

and imported to a 3D modeling package. These 3D models were developed into components, 

based on the physical experiments. Subsequently, the enhanced 3D graphics models were 

imported into the VR simulation software to be used as objects or environment of the VR lab 

simulation. In order to make the object and devices react in response to student actions, a 

behavior model (cause/ action/ reaction intelligent engine) has been developed for the 

simulation.  

 

Steps of testing and troubleshooting provided feedback in several sub-steps. First, the 

development team tested, identified problems, and improved the simulations. Then 

inexperienced students tested the modules to improve their user-friendly nature. Lastly, the 

laboratories were tested by “lay persons” and their feedback was used to further improvement.  

Some of the experiments were further tested by enthusiastic middle- and high-school students 

(Figure 4).  

 

 

 

 
Figure 4.  Students at the middle school (left) and 

college (right), experiment with level-appropriate 

virtual lab experiments. 
 

 

 

The virtual laboratory development steps are described in Figure 5. 
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Assessment 

Impact on sophomore students 

 

So far most of the project time was devoted to the development of the virtual laboratory 

modules. A comprehensive assessment plan is in place. Only limited assessment data could be 

collected on modules that were not fully developed. The impact of the virtual laboratory modules 

was then assessed through a post survey of those students who participated in the learning 

modules. A group of students served as an intervention group, while another group of 

comparable students served as the control group for grades only. The control group was not 

asked to respond to the survey.  The only difference in the learning experience between the 

groups was the participation in the virtual laboratory sessions.  

 

A survey of attitudes toward the VL sessions and perceived learning impacts indicated those 

students in the VL had a positive experience that reinforced concepts from the course and 

provided application opportunities.  

 

The survey data support the positive impact of using the VL modules on raising awareness of 

course content, understanding of subject matter knowledge, and gains in procedural knowledge. 

  

It should be noted that the survey was self-report, and included open response items for student 

comment. The comments were used as part of the feedback used to improve the modules. 

 

 CAD design 

 

3D modeling 
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Figure 5. Building of a VR simulation 
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Impact on pre-college students 

 

The VL modules were introduced to students in middle grade level during a campus visit (~age 

12-13). The students saw a demonstration of the modules and were able to manipulate the labs as 

well.  At the end of the visit, the students responded to a survey of attitudes toward the use of VL 

and career goals. The results indicate positive impacts of the experience. Specifically, students: 

 

 gained knowledge about engineering from the VL lessons 

 were able to understand and perform the VL lessons 

 expressed interest in doing more VL lessons 

 expressed interest in studying engineering in the future 

 

Summary 

 

The introduction of virtual experiments has proven to be beneficial to student learning. At the 

pre-college level, the laboratory is a tool that supports recruitment. Much more work is still 

needed and planned both in developing and perfecting the modules, and in assessing their impact 

on retention, recruiting, and overall success. 
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