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Tradeoffs in using Mathematica templates in an introductory
numerical methods course

Introduction

In this paper, we present tradeoffs involved in using Mathematica® (Wolfram Research, Inc.)
templates to “level the playing field” and facilitate teaching an introductory numerical methods
course. Given increases in class sizes, decreases in budgets and facilities, and changes in
technology used in the workplace, the objectives of such courses are evolving®. Therefore, the
rationale for using computer algebra system (CAS) templates to teach numerical methods

encompasses issues that have changed due to today’s educational and employment environments.

The rationale for the use of programming templates depends on course objectives and varies
among disciplines” ®°. The author’s experiences from 20 years of teaching numerical methods to
science, engineering, and mathematics (SEM) students are used to support the use of
Mathematica programming templates.

Student feedback with respect to the templates was solicited via pre- and post-questionnaires,
and show various ways in which students put the templates to use. Templates were used for
methods such as the bisection method, fixed-point iteration, Newton’s method, cubic spline
interpolation, method of undetermined coefficients for approximating derivatives, higher-order
Taylor methods for ordinary differential equation initial value problems (ode-ivps), Runge-Kutta
methods, Adams-Bashforth-Moulton predictor-corrector methods, and methods for systems of
ode-ivps.

Numerical methods course

The course is Math 4503/6603, Introduction to Numerical Methods. This course is a survey
course taught to science, engineering, mathematics, and computer science juniors, seniors, and
beginning graduate students and is offered by the Department of Mathematics in the College of
Engineering and Natural Sciences. The fall semester 2012 enrollment was 40 students. The
course balances theory, applications, and programming. Course topics include deriving, using,
and performing error analysis on techniques for equation solving, approximation and
interpolation, numerical differentiation and integration, and solving ordinary differential
equation initial value problems. We use the numerical analysis text by Burden and Faires'. The
programming assignments use Mathematica.

The choice of software depends on several factors, including availability, prevalence, and
usefulness®. CAS such as Mathematica are becoming more commonly used in engineering fields
and the workplace''. Therefore, for many students learning Mathematica, as opposed to some
other programming language, makes sense. Further, many other SEM courses at our university
use Mathematica. The Mathematica assignments are used in two different ways: (1) to assist in
understanding the numerical methods studied in the course and (2) to increase expertise in the
use of Mathematica to solve problems encountered in the SEM disciplines and in the workplace.

In the early 1990s, when first teaching this course, the author would spend several weeks at the
beginning of the course solely devoted to the use of Mathematica. This is no longer done.
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Instead, in recent years, the course has evolved into one in which several lecture classes
distributed throughout the semester have been replaced by hands-on computer lab classes using
Mathematica.

Templates

In the fall 2012 version of the course, Mathematica templates were used to “jump-start” students
with weaker Mathematica backgrounds so that these students could (hopefully) program early in
the course. Due to diverse student backgrounds, interests, and familiarity with Mathematica, it
was determined that Mathematica programming templates would be used to help students get
started with the programming aspects of the course. There are transfer students, international
students, graduate students, and non-traditional students. These students often are not familiar
with the use of Mathematica.

Templates can be structured in many different ways. For a specific numerical methods problem,
a template provided to students consisted of either a solution notebook (program file) for a
similar simpler problem, or a related problem solution notebook with the main body of code
missing. For example, sample code for initialization, an outline, and output formatting might be
given. The student would then write the main code implementing a method, include other details,
and insert documentation. Students always had the option of rewriting the given sample code.
Electronic versions of templates and Mathematica homework solutions were made available on
the college’s computer network for students to copy, adapt, and save in their own personal
directories.

Typical Mathematica homework assignment topics are: Taylor’s theorem, bisection method,
fixed-point iteration, Newton’s method, cubic splines, Euler’s method, Runge-Kutta fourth order
method (RK4), Runge-Kutta-Fehlberg method, RK4 for systems of ode-ivps, and consistency,
stability, and convergence for multi-step methods.

For a sample template notebook and part of a solution notebook in which portions of code are
missing (which can then be assigned to students to complete) used to study the bisection method,
see Appendices I and II, respectively. For a sample template notebook in which a simple
example of a more complicated problem (which can then be assigned to students) used to study
cubic spline interpolation, see Appendix III.

Questionnaires and data analysis

We used a Mathematica template in one hands-on computer lab and a template hand-out in one
lecture class prior to the “before” questionnaires were administered (on 9-17-2012). This was
done so that students were aware of typical expected Mathematica work. The “after”
questionnaire with the same questions was administered after the last Mathematica homework
was returned (on 11-14-2012). Questions are adapted from a related study conducted in a
chemical engineering course’,

The questions from the Math 4503/6603 Introduction to Numerical Methods Student
Questionnaire are as follows:
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I am comfortable writing Mathematica notebooks (programs).

I understand how to use basic Mathematica commands and Mathematica’s Help.

I understand how to use Mathematica’s If command.

I understand how to write some type of Mathematica loop (Do, While, For, etc.).

I understand how to use the Mathematica Module command

I can perform mathematical operations on variables in Mathematica,

Using a Mathematica template permits me to focus more on solving a problem than if I

did not have a Mathematica template.

8. The time spent programming an assignment is reduced by having a Mathematica
template.

9. After becoming familiar with using a Mathematica template, using a template is easier

than writing Mathematica code from the very start.

NSk -

Any observations, ideas, and/or comments about preferences with respect to using
Mathematica in this course.

Students responded by selecting one response per numbered question from the five Likert-type
categories of “strongly agree”, “agree”, “neither agree nor disagree”, “disagree”, or “strongly
disagree”. Students’ perceptions are studied using the difference in the numbers of responses in
each of the five categories (ranging from “strongly agree” to “strongly disagree™), comparing the
“before” with the “after” student responses. The numbers of responses in each category are given
in Table 1. The anticipated outcomes, as expected by the author, were more pronounced in favor
of template use than the actual responses received from students. Because students were exposed
to templates prior to the “before” questionnaire, the statistical results may be conservative. The
results may be conservative in the sense that more statistically significant response differences
between the “before” versus the “after” results might have been obtained if there had been no
prior student exposure to the templates.

The results with respect to statistical significance appear in Table 2. For each of the nine
questions, statistical analysis for independence of the “before” results versus the “after” results
was done using the Freeman-Halton test (with SAS Institute, Inc., software). The Freeman-
Halton test is a generalization of Fisher’s exact test for independence for contingency tables of
arbitrary size. We have a 2x5 contingency table (see Table 1) for each question.

The P value is the sum of the probabilities of occurrence of all contingency tables with the same
fixed row and column totals, and probabilities less than or equal to that of the observed table. A
small P value supports the alternative hypothesis, H,, of an association (dependence).
Equivalently, the P value is the estimated probability of rejecting the null hypothesis, Hy, when
that hypothesis is true. The null hypothesis is the hypothesis of no difference between the
responses to the “before” questions versus the “after” questions:

Hy: The “before™ versus “after” results are independent (no association between “before” versus
“after” results).
H,: The “before” versus “after” results are not independent.
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e If P < 0.05, then the results are interpreted as statistically significant at the & = 0.05
level of significance (having less than one chance in 20 of the “before” versus “after”
results being independent, i.e., no association between them).

e If P < 0.001, then the results are interpreted as highly statistically significant at the

a = 0.001 level of significance (having less than one chance in 1000 of the “before”
versus “after” results being independent).

For Questions # 1, 2, 6, 7, 8, and 9, comparing the number of “before” versus “after” responses
in each category, the results for student responses are not statistically significant. However,
students’ responses to Questions # 3, 4, and 5 are highly statistically significant. This means that
students’ perceptions of their abilities to use the commands and structures mentioned in those
three questions, i.e., the Mathematica If and Module commands and procedural programming
looping constructs (Do, For, While, etc.), has changed (increased) from the beginning of the
course compared to the end of the course. It should be noted that the analysis measures the
strength of the statistical effect, not the strength of the changes in perceptions. It should also be
noted that there are many other factors that affect the responses, not just the use of Mathematica
templates.

Student comments

The student questionnaire included one open-ended solicitation for information, “Any
observations, ideas, and/or comments about preferences with respect to using Mathematica in
this course”. There was a diversity of responses from students who chose to share their ideas.

Some of the student responses are quoted below.

Student comments from the “before” guestionnaire (9-17-2012):

e [ think that the most helpful aspects of the templates are that they gave examples of how
to use the display commands like Plot and TableForm. Other than that, I usually feel
like I understand what [ am doing better if I don’t rely on the templates very much.

e The templates are helpful but detract from actually learning the math. I remember less of
it when using the templates.

e [ actually think that writing some of the loop coding helps me understand the way the
problem is solved. However, sometimes an error in the coding takes a long time to
uncover and fix.

e [had alot of trouble with the loop the first time I tried it on the bisection homework. But
once I got that the rest was easy. It was a matter of syntax, not content. The same goes for
the Module command. '

e Sometimes Mathematica error messages can be less than helpful. For example, I spent
about 30 minutes debugging a “write protected” error when I just needed to add a
semicolon to the end of a line.
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Table 1. Student questionnaire responses

Strongly | Agree | Neither agree | Disagree | Strongly | Total
agree nor disagree disagree
Question #1 | 8 18 5 6 0 37

before

Question #2

19

17

37

Question #3
before

12

18

37

Question #4
before

19

37

Question #5
before

10

37

Question #6
before_

12

21

Question #7
before

17

11

37

Question #8
before

18

11

37

Question #9

19

11

37

9'8GeT sz abed



Table 2. Statistical significance of student questionnaire responses
Question# | P value | Is the difference between before and
after results statistically significant?

1 0.70 Not statistically significant
2 0.46 Not statistically significant
3 0.00036 Highly statistically significant
4 0.0000059 Highly statistically significant
5 0.000011 Highly statistically significant
6 0.31 Not statistically significant
7 0.11 Not statistically significant
8 0.076 Not statistically significant
9 0.55 Not statistically significant

Being a computer science major makes it easy to pick up Mathematica’s language (even
though I only used it once before), but people with different backgrounds will probably
have more trouble. It might help to tell students in the course description that this course
is Mathematica intensive. (I didn’t know that when I signed up.)

I have noted above [in the questionnaire] the methods I learned while doing homework
for this class. This class helps me analyze data in all of my other classes. Test looks hard,
though.

Can we have our tests with Mathematica?
If it was not for the templates, I would be very lost.

I definitely like the template. Hints on the trickier parts of the problems are also
extremely helpful and appreciated.

I would say if no template were to be given, a help sheet for the code would be nice.

In previous classes, templates were not available and the amount of time spent figuring
out how to write code was much greater than doing the math. The templates fix that.

Student comments from the “after” questionnaire (11-14-2012):

I understand very basic parts of Mathematica, and this course has definitely “beefed up”
my experience with it. It’s just daunting at the beginning of the class to have been
expected to write Do, If, While loops because I’'m very uncomfortable with computers
(not a computer science major!!!).

Though I have improved my ability in Mathematica, 1 hate it more than ever. Mostly due
to stability issues and lack of intuitiveness with the language itself.
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= ] think it was hard to connect the assignments with doing problems by hand. I could solve
by hand but had no idea how to transfer to Mathematica.

= ] felt that some of the homeworks were more about evaluating our Mathematica
proficiency rather than solving the problems and learning the course material. (This may

have been the intent — it is just an observation.)

= Try to limit class size so that Mathematica is available on test. That would help soooooo
much.

= [ learned a lot about Mathematica; templates were extremely helpful as both starter and
reference materials.

= If possible, I prefer to let the student choose his own programming language instead of
only using Mathematica.

= I learn well from examples of code so an example (toy) problem with some code
demonstration would be helpful.

= After only a slightly rocky start (I had almost no Mathematica experience) I am happy
with how the homework has gone.

=  The homework had a nice difficulty curve that allowed me to learn a lot of Mathematica!

* The problem statements available in Mathematica are a big help and help focus on the
actual problem instead of typesetting.

= Having the code actually was helpful to me for another class.

Tradeoffs: How do templates help and how do they hinder?

The results of the student questionnaire, as well as the author’s observations, suggest the
following advantages and disadvantages of using templates.

Pros

The use of templates frees up class time and student time so that more substantive mathematical
questions/topics can be considered.

For students who learn by example, templates give a uniform, structured way of providing
examples that can then be adapted as needed. Further, templates are effective for modification by
the instructor for future assignments.

An ordered and controlled means of increasing the complexity of problems assigned to students
is provided. For example, after the template for fixed-point iteration was provided, students were
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then assigned homework to code Newton’s method in Mathematica to solve a specific problem.
This could be accomplished by adapting the previous fixed-point iteration template.

The familiar structure of submitted work implies easier grading of homework. For example, in
larger classes, a paper grader can grade Mathematica homework.

- Cons

As observed from some of the student comments, the use of templates may interfere with
learning and/or stifle creativity. There is less of a tendency to understand and remember work
that is not one’s own. A useful balance of work with versus without templates is achieved.
Soliciting student feedback and a trial-and-error approach to this balance applied throughout the
semester is suggested’.

Even with the use of templates, students stated that they needed more hands-on labs. Especially
with international, graduate, and transfer students, the use of modules to replace much of the
hands-on lab time did not work well. Weekly assignments often did not give enough time for
students to effectively debug their code (at least that is what students stated).

It was too easy for this professor to start at too complex a programming level by assuming that
students were more familiar with Mathematica than they actually were. Similarly, the temptation
to proceed too quickly must be restrained.

As arelated issue, what about students learning how to debug their own code? When is help too
much help or simply the wrong type of help? With respect to debugging, instead of directly
showing what is wrong, simply looking at the incorrect output (in cases where there is output)
can help a student learn how to more effectively debug? For example, if Mathematica is not
simplifying expressions that it would be expected to simplify, then this might be recognized as a
clue that some symbol was not typed correctly. If output contains “Log e”, which automatically
should have been simplified to be 1, this might indicate that the Roman letter e was used instead
of, for example, the correct palette symbol e.

Summary

Comparisons with respect to the use of programming templates can be made with studies for
specific engineering courses done by other academics. Template use is discussed in teaching
chemical engineering courses*° and computational fluid dynamics'®. The discussion of the use
of spreadsheets to teach electrical engineering? can be extended to CAS programming templates.

The use of templates alone to introduce Mathematica, even though this is done with hands-on
computer labs, may not be sufficient. But is the use of templates helpful to students? If done
well, then the author feels that the answer is “yes”. The author and colleagues plan more detailed
study on this topic.

Mathematica templates and notebooks for the bisection method, fixed-point iteration, Newton’s
method, cubic spline interpolation, method of undetermined coefficients for approximating
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derivatives, higher-order Taylor methods ordinary differential equation initial value problems
(ode-ivps), Runge-Kutta method, predictor-corrector method, Adams-Bashforth-Moulton
predict60r-corrector method, and methods for systems of de-ivps are available by contacting the
author’.
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Appendix I. Sample bisection method template

» MATH 4503/6603 Mathematica Lab - Mathematica and the Bisection Method

n  Use Mathematica to implement the Bisection Method.

3x3-7x2-6x+7

Typical Problem: Given the rational function, f(x) = T 623 116

a) Use a graph to locate (approximately) the largest real zero of f.

b) Program and use the bisection method to approximate the largest real zero of £, to within a tolerance of 107>,

¢) Use the minimum number of bisections for which the result is guaranteed to satisfy the given tolerance (have Mathematica
calculate this number, using Theorem 2.1).

Solution:

B Q) Initialization

INSERT TOOLBAR AND PALETTE(S), AS NEEDED

This code is written for Mathematica Version 8.0.

Dynamic[Refresh[DateString[], UpdateInterval -» 1]]
Wed 27 Feb 2013 17:08:51

Clear["Global %", "Subscript"]
(» Off[Solve::"ifun”] =)
= b) Verification that the bisection method can be applied

INSERT MISSING CODE FOR THE FUNCTION DEFINITION AND RELATED GRAPHICS

£[2] * £[3]
21

6400

Observe that f is continuous on [2, 3] and that f(2)« f(3) <0 (i.e., f (2) and f (3) have opposite signs).
Therefore, the hypotheses of the bisection method are satisfied, and we can apply the bisection method to approxxmate a zero of

finf2, 3].

® ¢) Bisection method initialization

Notation:

The initial interval is chosen as [a, b] = [a(1), b(1)] = [2, 3], and its midpoint is p(1). The error tolerance is tol = 1073, The
iteration index (counter) is denoted by n, with nMax, the number of i 1terat10ns required. Note that a smaller interval could have
been chosen and would result in fewer iterations, in general. '

a[l]l =2; b[1] =3;

tol = 1075;
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2| mathematica lab - bisection method with just module and some other code missing.nb

Apply text's Theorem 2.1:

b[l] -a[1]

sol = Solve[
2n

== tol, n] // N // Flatten

Solve:ifun : Inverse functions are being used by Solve, so

some solutions may not be found; use Reduce for complete solution information. >

{n—->16.6096}
nMax = Ceiling[n /. sol]
17

= d) Bisection method computations

The bisection method main loop is expressed as follows within a Module command. Note the use of delayed assignment:

INSERT MISSING CODE FOR THE BISECTION METHOD (MODULE)

Execute the bisection method with the appropriate data:
bisectionMethod[a[l], b[1], £, nMax]

The following list was printed for debugging purposes and should be deleted before printing the final version of this notebook (or
the output can be suppressed with a semicolon).

= ¢) Bisection method numerical results

COULD INSERT CODE TO INCLUDE f[p[n]] IN DATA LIST AND TABLE

data = Table[{n, a[n], b[n], p[n]}, {n, 1, nMax}]

{{1, 2, 3, 2.5}, {2, 2.5, 3, 2.75}, {3, 2.75, 3, 2.875}, {4, 2.75, 2.875, 2.8125},

{5, 2.75, 2.8125, 2.78125}, {6, 2.75, 2.78125, 2.76563}, {7, 2.75, 2.76563, 2.75781},
(8, 2.75, 2.75781, 2.75391}, {9, 2.75, 2.75391, 2.75195},

{10, 2.75195, 2.75391, 2.75293}, {11, 2.75195, 2.75293, 2.75244},

{12, 2.75195, 2.75244, 2.7522}, {13, 2.75195, 2.7522, 2.75208},

(14, 2.75195, 2.75208, 2.75201}, {15, 2.75195, 2.75201, 2.75198},

{16, 2.75198, 2.75201, 2.752}, {17, 2.75198, 2.752, 2.75199}}

Bisection Method Output:
The values of p,, n=1, ..., nMax, are the successive approximations.
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mathematica lab - bisection method with just module and some other code missing.nb |3

Print[Style["Bisection Method Results", FontFamily - "Harrington", Bold, 14, Red]]:
TableForm[data,
TableHeadings -> {{}, {"n", "a,", "b,", "p,\n"}}, TableSpacing -» {2, 5}]

n an bn Pn

1 2 3 2.5

2 2.5 3 2.75

3 2.75 3 2.875

4 2.75 2.875 2.8125
5 2.75 2.8125 2.78125
6 2.75 2.78125 2.76563
7 2.75 2.76563 2.75781
8 2.75 2.75781 2.75391
9 2.75 2.75391 2.75195
10 2.75195 2.75391 2.75293
11 2.75195 2.75293 2.75244
12 2.75195 2.75244 2.7522
13 2.75195 2.7522 2.75208
14 2.75195 2.75208 2.75201
15 2.75195 2.75201 2.75198
16 2.751098 2.75201 2.752
17 2.75198 2.752 2.75199

m ) Verification of the bisection method numerical results

We can compare with the result from Mathematica's FindReot command to verify that our numerical approximation is within the
error tolerance.

exact = FindRoot[f[x] == 0, {x, 0}]
{x—>2.75199}

exactZero = x /. exact

2.75199

AbsErrorMagnitude = Abs[p[17] - exactZero]

4.85552x 107

Verify that the approximate zero is within the specified tolerance of the exact zero (which is known in this problem, because the
problem is a "test problem"):

AbsErrorMagnitude < tol

True

Conclusion:
An approximation to the exact solution to within the stated tolerance is given by p;7 = 2.75199 (rounded), as required.
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Appendix II. Sample module solution for bisection method

.u ) Bisection method computations

The bisection method main loop is expressed as follows within a Module command. Note the use of delayed assignment:

bisectionMethod[aa , bb_, F_, numberOfIterations ] := Module [{} ’

af[l] = aa;
b{1l] =bb; ,
If[F[a[l]] *F[b[1]] > O,

_ Print["Error message. Root is not suitably bracketed. Stop."]; Abort[]]:
If[F[{a[l]] *F[b[1]] ==0,

Print["Error message. Root is an end point. Stop."]; Abort{]]:

(* Note the use of the decimal point in the following command;
This forces Mathematica to use approximate floating-point arithmetic,
which is generally faster than exact arithmetic. %)

a[l] +b[1]
pll] = ——;

Do
If[F[p[n]] ==0,
Print["The midpoint p(", n, ")= ", p[n], ¥ is a root. Stop."]; Abort[]l]:
If[F[a[n]] *F[p[n]] <0, a[n+1] =a[n}; b[n+1] =p[n],
a[n+1] =p[n]; b[n+1] =b[nl]:

b[n+1l] -a[n+1]
pin+l] =a[n+1] + 3 ’

{n, 1, numberOfIterations}]
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Appendix IIL. Sample module for a simple cubic spline interpolation

CUBIC SPLINES - Sec. 3.5 (Burden and Faires, 9th edition)
Mathematica lab: Cubic Spline interpolation

» Cubic splines:

Basic problem: We are given the data points (x;, y;), k=0, .., n. Obtain and graph s(x), the natural cubic spline (for
which s''(xp)=0and s''(x,)=0).

This outline is different from, but equivalent to, the presentation in Section 3.5 of our text,
Numerical Analysis, 9th Edition, Burden and Faires.

The following list is a possible outline for the computational steps:

Create lists containing the x and y coordinates, respectively, for the interpolation points;

The natural cubic spline s(x) (which satisfies s''(xp) =0 and s' '(x,,)\= 0) is constructed from first principles. Begin with the
cubic polynomials:

Interpolate at pairs of adjacent points to obtain the interpolating equations for the cubic polynomials defined on the subintervals.
There are » subintervals and, consequently, n cubic polynomials to be defined;

Impose continuity of the first derivatives of the cubic spline at all interior nodes to obtain additionall equations;
Impose continuity of the second derivatives of the cubic spline at all interior nodes to obtain further equations;
Implement the endpoint conditions to obtain the final two equations;

Determine the solution of this linear system of 4» equations in 4n unknowns;

Construct the cubic spline s(x);

Verify that the end conditions for a free (natural) cubic spline are met, s ' '(xp) =0and s' '(x,) =0;

Generate a plot of the data points and s(x), the natural cubic spline, etc.;

Example - Develop a very simple natural cubic spline: .

m [Initialization:

The following code is designed to run in Marhematica 8.0.
wi}» Clear ["Subscript", "Global~x"];
w2y DateStringl]

ozl Thu 13 Dec 2012 11:50:21

mjsp= data = {{-10, -2}, {1, 16}, {5, -10}};
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Observe various ways to present graphics:

ListPlot[data, ImageSize - Small]

L}

10F
interpolation points|
5¢
are green dots

-10} ¥
plotl = ListPlot[data, PlotStyle » {Red, PointSize[0.04]},

PlotLabel -> " Interselstion Points\n", AxesLabel - {"x", "y"},
ImageSize -» Small, PlotRangeClipping - False] '

intarpelstion Points

15t @

10F

L . . . . t - X
@ -8 —6 -4 -2 2 4
_5,

-10+ @

m  Code to develop the cubic spline:

Caution: The notation used in this Mathematica notebook differs from that used in the text.

Note: There are 2 subintervals and 2 cubic polynomials, »n = 2. Observe that s5;(x), i=0, ..., n— 1, denotes the ith cubic polyno-
mial comprising the cubic spline, s(x). Find the natural cubic spline using the given data set.

n=2;

ao*x3+bo*x2+co*x+do;

so[x_]

s;[x ] za;*x>+by*x2+oy ¥ x+dy;
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= Example of a module:

constructCubicPolynomials[num ] := Module [ {},
Print[Style["These are the cubic polynomials comprising the cubic spline."”,
FontFamily - "Chiller", Magenta, Bold, 16]];
Do |

2ro;xx+d;;

s;[x ] = ai*x3+bi*x
Print["s";, "(x)=", s;[x]],
{i, O, num—l}] :
SequenceForm[Style["Observe that there are ", FontFamily - "Forte", Red, 14],
num, Style[" cubic polynomials.", FontFamily - "Curlz MT", Blue, Bold, 12]]

]

constructCubicPolynomials[n]

These are the cuble pdymmfa?‘s comprising the evble S?ﬁ%i?\e,

3

So(X)ZX ao+X2bo+XCo+d0

3

s1(x)=x%a; +x°by +xCy +d;

Obgerve that there are 2 cubic polynomisls.

m  Construct and solve the linear system of equations:

Note: There are 8 unknowns to determine; therefore, we need 8 independent equations;

eq; =sp[-10] == -2;

eq, = 8o[1] == 16;

eq; = s;[1] ==16;

eq, = s [5] == -10;
eqs; = sp'[1] ==s; "[1];
eqg = 8o ''[1] ==s1""[1];

eq; =89"''[-10] = 0;
eqg =8;"''[5] ==0;

We have this system of 4 n equations in 4 * n unknowns:

Table[eq;, {i, 1, 4*n}] // ColumnForm

~1000 a9 +100bg-10co+dg = -2
ag+bg+cog+dy =16
a1+b1+C1+d1 =16
125a1+25b1+5c1+d1 = -10
3ag+2bg+cg=3ar+2b;+c,
6ao+2b0 == 6a1+2b1
—6Oa0+2b0 =0

30a;+2b; =0
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Solve the system of 4x# = 8 independent linear equations in 4 » unknowns. Obtain the following list of replacement rules:

solution = Solve[Table[eq;, {i, 1, 4*n}],
Flatten[Table[{a;, b;, c¢;, d;}, {i, 0, n-1}]] ] // Flatten

179 179 20161
(00— by o ey -
7260 242 7260
4729 179 179 6599 3423
do = a; > ——, by 5> ——\, — & ————}
2640 2640 176

= Numerical results:
so[x_] =s0[x] /. solution

4729 20161x 179x% 179x%3

242 7260 242 7260

s;[x_] = s1[x] /. solution

3423 6599x 179x? 179%3
- - +
176 2640 176 2640

? Piecewise;
The cubic spline, s, is:

s[x_] = Piecewise[{{so[x], -10sx< 1}, {s;[x], 1 sx<5}}]

4729 20161 x 179 x2 179 x3

—_— — - - <
242 7260 242 7260 10sx<1
3423 6599 x 179 x? 179 %3
—_— - - + lsx=<b5
176 2640 176 2640
0 True

s[x] // N

19.5413-2.777%-0.739669x2-0.0246556x% -10. <x<1.

19.4489 -2.49962 x-1.01705%2+0.067803 x> 1. =sx=<5.
0. True

Optional: Verify that the boundary conditions are satisfied:
s''[-10]
Indeterminate
s''[5]
Indeterminate
Limit[s''[x], x> -10]
0
Limit[s''[x], x> 5]

0
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= Graphics:
We can graph the natural cubic spline and some of its derivatives. Observe that continuity is as expected:

plot2 = Plot[s[x], {x, -10, 5}, Axeslabel » {"x", "y"},
Plotlabel » Style["Cubic Spline", FontFamily -> "Comic Sans MS", 12, Purple],
PlotStyle » Hue[0.8], ImageSize - Small];

Show[plot2, plotl, PlotLabel - Style["Cubic Spline and \nInterpolation Points\n",
FontFamily -> "Comic Sans MS", 12, Bold, Hue[0.9]], PlotRangeClipping - False]

Cubic Spline and
Interpolation Points
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m  Optional: Investigation of smoothness of higher order derivatives of the cubic spline:

Plot[s'[x], {x, -10, 5}, ImageSize -» Small,
PlotLabel - "First Derivative of \nCubic Spline"]

First Derivative of

Cubic Spline

Plot[s''[x], {x, -10, 5}, ImageSize -» Small,
PlotLabel - "Second Derivative of \nCubic Spline"]

Second Derivative of
Cubic Spline

~10~8-6-4-2 | 2 4
/
N -0.5 /
N /
i
NLof /

13 \/I
However, note that the following graph is discontinuous at the interior node(s) (as would be expected):

Plot[s'''[x], {x, -10, 5}, ImageSize -» Small,
PlotLabel -» "Third Derivative of \nCubic Spline"]

Third Derivative of

Cubic Spline
04 ——
03
02¢
0.1}

~10-8-6-4-@1F 2 4
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