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Matching Pursuits in EEG Analysis :                                                       

Development of a diagnostic tool 

An Electroencephalogram (EEG) signal is the recording of the electrical activity (voltage 

fluctuations) along the scalp due to the currents that flow during synaptic excitations of the 

dendrites of many pyramidal neurons in the cerebral cortex. When neurons are activated, the 

synaptic currents are produced within the dendrites. This current produces the magnetic field 

giving rise to mapping of cortical activity measurable by magneto-encephalography (MEG) 

machines and a secondary electrical field over the scalp measurable by EEG systems. Mastery 

and expertise in clinical EEG interpretation is one of the most desirable diagnostic clinical skills 

in interpreting seizures, epilepsy, sleep disorders, and other neurocognitive studies.  

 

In most cases EEG activity is described in terms of frequency, amplitude, distribution or 

location, symmetry, synchrony, reactivity, morphology, rhythmicity and regulation. The dynamic 

nature of epileptic phenomena causes EEG signals to exhibit stochastic and non-stationary 

behavior. The time frequency distributions are potentially very useful for detecting and analyzing 

non-stationary epileptic EEGs. Although visual analysis of raw EEG traces is still the major 

clinical tool and the point of reference for other methods, we can relate visual analysis to 

mathematics with a time-frequency description. The EEG signal analysis is often complemented 

with MEG and functional magnetic resonance imaging (fMRI) to correlate specific EEG findings 

with pathology of the brain and selectively demonstrate the diagnosis of certain neuronal disease 

processes, and assessment parameters. 

 

This diagnostic tool is in no way to be taken as a final word to replace physician’s clinical 

consultation and opinion, rather it is intended to be an early monitoring and warning tool which 

will aid in diagnosis of certain aspects of critical care and emergency medicine. This interactive 

teaching module will be highly beneficial since it will facilitate progressive learning of students 

by enhancing their understanding of clinical EEG parameters and their relationship with 

differential diagnosis of the patients. 
 
 

Introduction 

The advances in computing have given a new meaning to the term applied signal processing. 

Enhanced methods are becoming available to users with little mathematical background. 

Adaptive time frequency approximations of signals with known algorithms and implementation 

of the matching pursuits is computer intensive. This inhibited their everyday practical 

applications before the last decade, but today they can run on standard laptops, tablets and even 

smart phones. 

 

Acquiring data from the heart’s electrical activity as an electrocardiogram (EKG), from muscles 

as an electromyogram (EMG), from the eyes as an electrooculogram (EOG), from the brain as an 

electroencephalogram (EEG) or as a magnetoencephalogram (MEG),
12 

has become vital for early 

diagnosis of a variety of diseases. A wide array of medical and neurological disorders can cause 

changes in the EEG patterns. These changes are not always pathognomonic, and they may tend 

to be highly variable, nonspecific and sometimes even limit their diagnostic importance. Unlike 

traditional books on EEG, this paper will attempt to concentrate on pattern recognition, 
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identification of rhythms and waveforms. It also explains the laboratory setup of a conventional 

10-20 electrode based EEG monitoring station using modern data acquisition tool and software 

for EEG feature extraction. Students will begin their analysis by looking at frequency, amplitude, 

distribution or location, symmetry, synchrony, reactivity, morphology, rhythmicity, and 

regulation and correlate the characteristic appearance on the EEG with existing conditions, 

certain pathology, and drug or electrolyte effects.  

A diagnostic tool using Java programming has been developed. The graphical user interface will 

be used in conjunction with EEG monitoring system to correlate specific visual EEG findings 

with pathology of the brain and selectively demonstrate polysomnography, neurocognitive 

studies, and neurological assessment parameters.  

EEG Lab Instrument Setup  

To ensure that EEG recordings are reproducible and consistent from one recording to next, a 

standard for electrode placement was developed in the 1950s by Dr. Herbert Jasper at the 

Montreal neurological Institute. This widely accepted scheme is known as the International     

10-20 System of Electrode Placement. The underlying principle is that accurate measurements of 

the skull using specific identifiable landmarks can be subdivided into smaller distances based on 

10% or 20% increments of the total distance. The three primary measurements are in the sagittal, 

coronal, and horizontal planes. The sagittal measurement is from nasion (notch at the top of the 

nose) to the inion (midline prominence at the occipital pole). The coronal measurement is from 

just anterior to the tragus of the ear in front of the auditory canal to the midpoint of the saggital 

measurement to the opposite tragus. The intersection of these two lines is defined as the vertex. 

The horizontal measurement is made connecting points that are 10 % up from nasion, inion, and 

tragus points on the sagittal and coronal lines. This circumference measurement defines the 

horizontal plane and is based on an iterative subdivision of arcs on the scalp starting from the 

craniometric reference points: Nasion, Inion, Left (PAL) and Right (PAR) pre-auricular points. 

The intersection of the longitudinal (Ns-In) and lateral (PAL-PAR) is named the Vertex. 

 

The original 10-20 system included only 19 electrodes (see panel B of the figure below). Later 

on, extensions were proposed so that now you can place over 70 electrodes in standard positions 

(see panel C of the figure). This extension also renamed four electrodes (marked in black in the 

figure); the original names were: T3, T5, T4, and T6 for T7, P7, T8, and P8, respectively. Odd 

numbers indicate the left hemisphere, even numbers indicate the right hemisphere.                         

By convention, electrodes are named using capital letters to designate the underlying brain lobe 

or region. (F = Frontal, T = Temporal, C = Central, O = Occipital, P = Parietal) 

The letters “p” and “z” denote the frontopolar and midline regions. 
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The diagram in figure 2 shows the new Biomedical Tool Kit from National Instrument. This 

application software can be used for real-time acquisition or generation of simulated EEG signal. 

Figure 3 shows an example of a five-second duration of the time-domain EEG signal display 

using the Biosignal Viewer. Every five-second duration of the recorded EEG data is processed 

individually, and this procedure continues until the very last segment of time. Since EEG signal 

contains multiple channels of data corresponding to different electrode position on the brain, 

similar processing of the EEG signal is carried out for each channel.  

 

 

Figure 2 

 

 

Figure 3 
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Biosignal Viewer Report 

 

File Name: C:\Users\3eff409\Documents\ASEE\EEG_Data\EEG_Data_1.tdms 

Report Time: 3/14/2013 11:47:59 AM 

User Name: 3eff409 

 

General 

Channel Name Sampling Rate (Hz) Unit 

EEG 256 uV 

 

 

Measurements Result 

Channel Name Cursor Position 

EEG ( 00:00:01.11 , -10.11uV ) 

 

Plots 

 

Cursor position: ( 00:00:01.11 , -10.11uV )              

Figure 4 

Abnormal spike activity that is associated with epilepsy can be measured using the cursor 

position as shown in Figure 4. Unlike the ECG signal which has specific feature that can be 

extracted using the ECG Feature Extractor in Biomedical Workbench, the EEG signal is more 

complex and thus meaningful analysis can only be done by converting into frequency domain 

using FFT algorithm. 
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The EEG signals of interest in recording are composed of low amplitude voltage oscillations. 

While it would be possible to measure each signal relative to electrical ground, most of the 

important biological information is contained in the small fluctuating voltages associated with 

synaptic events rather than absolute potential distance from ground. To allow sufficient 

amplification to see these fluctuating potentials without magnifying the absolute potentials on 

which they ride, the logical choice is to use a low-frequency filter to eliminate the direct current 

potentials. With low frequency filters, one can select Low Frequency Filter (LFF) cutoff 

frequencies of 0.1, 0.3, 1, 3, or 10 Hz, corresponding to time constants of 1.6, 5.3, 0.16, 0.05, or 

0.016 second. Even with modern digital equipment, the same LFF values work well with 

standard scalp EEG frequencies. The most common setting is 1 Hz (τ = 0.16 s), which nicely 

preserves most low frequency information but largely eliminates drift of the baseline due to dc 

potentials. 

As mentioned earlier with modern digital EEG systems, high and low frequency filtering are 

usually performed using signal processing software after the digitized signal is recorded, making 

it possible for the reader to change these values when the study is read and view the effects of 

several different filter settings on the same EEG trace. 

Invasive EEG refers to the surgical intervention 
12

 that is required to obtain intracranial EEG 

recordings, and may be obtained either acutely or chronically. Invasive methods provide a 

focused look at targeted areas of the brain through surgically placed or implanted electrodes 

directed at sites that have been preselected based upon noninvasive localization. Direct recording 

of the EEG from the brain is known as electrocorticography (ECoG) and may be acquired either 

in or outside of the operating room. Chronically implanted or indwelling electrodes are typically 

used for seizure monitoring prior to respective epilepsy surgery. Invasive EEG records the same 

electrocerebral potentials as those recorded by scalp EEG. In certain types of epilepsy, removal 

of the epileptogenic zone within the brain tissue is the only possible therapy due to drug-

resistance. However it is still very difficult to delineate the exact localization of the epileptogenic 

zone without invasive EEG registration.  

 

A primer on FFT, DFT, STFT, Wavelet Transform, and Gabor functions 

 

Proper description of the EEG often requires simultaneous localization in both time and 

frequency domains. The classical Fourier Transform (FT) analysis is able to achieve infinite 

frequency resolution, but it does not provide temporal localization information. In case of 

multichannel EEGs, where the geometrical position of the electrodes reflect the spatial 

dimension, a space-time-frequency (STF) analysis through multiway processing methods has 

also become popular. The short-time Fourier transform (STFT) is defined as the discrete-time 

Fourier transform evaluated over a sliding window. 

 

The wavelet transform (WT) is another alternative for a time-frequency analysis. Unlike the 

short-time Fourier transform, the time-frequency kernel for the wavelet transform based methods 

can better localize the signal components in time-frequency space and as such can efficiently 

exploit the dependency between time and frequency components. 
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Introduction to Matching Pursuit Algorithm 

 

One of the first applications of matching pursuit (MP) in EEG analysis was detection and 

parameterization of sleep spindles--structures present in sleep EEG recordings. The matching 

pursuit (MP) algorithm
3
 is often used instead of popular time-frequency (TF) domain approaches 

such as short-time Fourier transform and the wavelet transform because of its higher temporal-

spatial resolution in the TF space. Some preliminary applications of the matching pursuit 

method have appeared, analyzing routine EEG, ictal scalp EEG, sleep EEG, and evoked 

potentials. In this study, it is shown that the suitability of the MP analysis for entire seizures, 

but specifically examine the periods after seizure onset, when the dynamics of the signal 

are typically rapidly changing.   

 

Given a set of functions (dictionary) D = {g1, g2, …, gn}such that || gi || = 1, we can define an 

optimal M-approximation as an expansion, minimizing the error ε of an approximation of signal 

f(t) by M waveforms:  

 

 

(1) 

 

Where {γi}i=1..M represents the indices of the chosen functions gγi. Finding such an optimal 

approximation is not practical. A suboptimal expansion can be found by means of an iterative 

procedure, such as the MP algorithm. In the first step of MP, the waveform gγ0 which best 

matches the signal f(t) is chosen. In each of the consecutive steps, the waveform gγn is matched 

to the signal  R
n
 f, which is the residual left after subtracting results of previous iterations:  

 

 

(2) 

 

Orthogonality of R
n+1

 f and  gγn in each step implies energy conservation:  

 

(3) 

 

For a complete dictionary the procedure converges to f :  

 

(4) 

 

From this equation we can derive a time-frequency distribution of the signal's energy. The (5) is 

shown below, that is free of cross-terms, by adding Wigner distributions of selected functions:  P
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Discrete Gabor Dictionary  

Other method is the Gabor representation 
5
 that does not assume that the signal is known at 

arbitrary time and frequency points, but at a lattice points: t = nT, w = kF;                                   

where n, k ∈ Z; T is the sampling interval in the time domain; and F is the sampling interval in 

the frequency domain. Figure 5 demonstrates examples of different shapes of Gabor functions, 

which can be included in the dictionary used for MP decomposition. 

 

          

 

 

 
 

 

 

 

 

                                                   Figure  5  

 

 

 

Gabor functions are essentially sine-modulated Gaussian functions that provide optimal joint 

time-frequency localization. A real Gabor function can be expressed as:  

 

 

(6) 

 

N is the size of the signal for which the dictionary is constructed and K(γ) is such that || gi || = 1.  

 γ = {µ, ω, s, ϕ}, denoting parameters of the dictionary's functions (time-frequency atoms). The 

length of signal (N points) suggests ranges for the parameters of Gabor functions which can be 
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reasonably fitted to such an epoch. However, within these ranges no particular sampling is a 

priory defined, and we are confronted with a three-dimensional
 
continuous space; this results in 

an infinite dictionary size. Therefore, in practical implementations, we use subsets of the possible 

dictionary functions.  
  

In the dictionary implemented originally by Mallat and Zhang, 
3
 the parameters of the atoms are 

chosen from dyadic sequences of integers. Their sampling is governed by an extra parameter—

octave j (integer). Scale s, which corresponds to an atom's width in time, is derived from the 

dyadic sequence s = 2
j
, 0 <= j <= L (signal size N = 2

L
). Parameters µ and ω, which correspond 

to an atom's position in time and frequency, are sampled for each octave j with interval s = 2
j
, or, 

if oversampling by Ɩ is introduced, with interval s = 2 
j- Ɩ

.   

 

There is considerable interest in identifying patterns of seizure discharges that would   

characterize complex partial seizures originating from different brain regions. Modern efforts 

have dealt with visual identification of seizure patterns and rhythms, either from scalp, 

sphenoidal, or intracranial recordings. The u tilization of intracranial recording electrodes, 

either subdural strips, grids or depth electrode arrays, reduces artifact and facilitates recording 

and localization of seizures in many instances.  Visual interpretations of the recordings, 

however, are still severely restricted  by the fact that  EEG signals, even from a single channels, 

rather  than  being a continuous  periodic waveform, more typically have components of 

multiple frequencies and may be rapidly evolving. 

 

The ability to further analyze seizure activity is often limited by methods that require 

stationary epochs of data.  Fourier spectral analysis measures frequency distributions for 

selected epochs but it is not optimal for analysis of rapidly changing data.  Application of the 

Fourier transform assumes relative stationarity of the signal or treats it as such for the analysis 

window. With less stationary signals, Fourier analyses can be performed with shorter time 

analysis windows (Short T ime Fourier transform, STFT), but Fourier analysis is still best 

suited to investigations of background rhythms and not dynamic events such as seizures.  

 

The aim of time-frequency analysis is to offer the ability to analyze relatively long continuous 

segments of seizure activity even when the dynamics of the signal are rapidly changing. One 

approach to accurately analyze non-stationary signals such as the ictal EEG is to represent 

the signal as a sum of waveforms with well-defined time-frequency properties.  In Fourier 

analysis these waveforms are cosines and sines which provide localization in frequency but 

not in time. 

 

The wavelet transform methods use base waveforms with localization both in time and 

frequency. Wavelet transforms do not require the fixed data window needed for Fourier 

analysis and are applicable to analysis of non-stationary signals. However, even wavelet 

bases are not well suited to exact simultaneous representation of time and frequency 

domains of signal components whose localizations in time and frequency vary widely. 

Wavelet analyses are best suited for analysis of random spikes or phenomena such as evoked 

potentials. Similarly the Wigner distribution (WD), while allowing for excellent 
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decomposition of non-stationary signals over time, is most appropriately applied to signals of 

a single component;  multicomponent signals produce interference  due to cross-terms.  

   

Video-EEG Monitoring and Epilepsy Surgery 

Long-term video-EEG monitoring with scalp electrodes is a well-established tool that permits 

time-locked correlation of paroxysmal clinical events with electrographic data. Video-EEG 

monitoring enables the accurate classification of seizures for optimal choice of medical therapy 

and, for patients with medically intractable partial epilepsy, assists in localization of the 

epileptogenic focus for possible surgical resection. Video-EEG monitoring is also helpful in 

monitoring the response to treatment of epilepsy. Seizure frequency documentation in epilepsies 

characterized by typical and atypical absence seizures and for clinical manifestations and 

monitoring of epileptiform activity in sleep studies can be accomplished as well. 

The monitoring of sleep is complex and requires a distinct skill set including a detailed 

knowledge of EEG, respiratory monitoring, and EKG. Expertise in only one of these areas does 

not confer the ability to accurately interpret the polysomnogram. Sleep is not homogeneous and 

is characterized by sleep stages based on EEG, EOG, and EMG. Since reading, analyzing and 

interpreting noninvasive and invasive EEG for epilepsy, polysomnography and neurocognitive 

studies are huge topics, the focus will be mainly on EEG interpretation by leveraging 
2
 the power 

of Java graphical user interface (GUI) and its data structures. So as to not be overly verbose in 

our descriptions of abnormal and normal EEGs and evoked potentials, only a success story will 

be told.  

Given below is an example of an instructor lead program which the student edited, compiled and 

displayed. The purpose of this program is to show how general Java workhorse discrete Fourier 

Transform and other EEG analysis methods 
7
 can be introduced at an early stage to engineering 

technology students with tools and concepts that will be further reinforced in EEG analysis and 

future DSP courses. 

public class Fourier { 

 public static double[] discreteFT(double[]fdata, int N, boolean fwd){ 

  double X[] = new double[2*N]; 

  double omega; 

  int k, ki, kr, n; 

  if (fwd){ 

   omega = 2.0*Math.PI/N; 

  } else { 

   omega = -2.0*Math.PI/N; 

  } 

 for(k=0; k<N; k++) { 

  kr = 2*k; 

  ki = 2*k + 1; 

  X[kr] = 0.0; 

  X[ki] = 0.0; 

  for(n=0; n<N; ++n) { 
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   X[kr] += fdata[2*n]*Math.cos(omega*n*k) + 

fdata[2*n+1]*Math.sin(omega*n*k); 

   X[ki] += -fdata[2*n]*Math.sin(omega*n*k) + 

fdata[2*n+1]*Math.cos(omega*n*k); 

     } 

       } 

 if ( fwd ) { 

  for(k=0; k<N; ++k) { 

   X[2*k] /= N; 

   X[2*k + 1] /= N; 

  } 

 } 

 return X; 

 } 

 } 

 

The TestDFT application class given below uses class Fourier and invokes its methods.  

//TestDFT Program 

public class TestDFT { 

 public static void main(String args[]) { 

  int N = 64; 

  double T = 2.0; 

  double tn, fk; 

  double fdata[] = new double[2*N]; 

  for(int i=0; i<N; ++i) { 

   fdata[2*i] = Math.cos(4.0*Math.PI*i*T/N); 

   fdata[2*i+1] = 0.0; 

  } 

 double X[] = Fourier.discreteFT(fdata, N, true); 

 for (int k=0; k<N; ++k) { 

    fk = k/T; 

    System.out.println("f["+k+"] = "+fk+"Xr["+k+"] = "+X[2*k]+ "  Xi["+k+"] = "+X[2*k + 1]) ;                                                                         

} 

 for (int i=0; i<N; ++i) { 

  fdata[2*i] = 0.0; 

  fdata[2*i+1] = 0.0; 

  if (i == 4 || i == N-4 ) { 

   fdata[2*i] = 0.5; 

  } 

 } 

 double x[] = Fourier.discreteFT(fdata, N, false); 

 System.out.println(); 

 for (int n=0; n<N; ++n) { 

    tn = n*T/N; 

     System.out.println("t["+n+"] = "+tn+"xr["+n+"] = "+x[2*n]+"  xi["+n+"]  = "+x[2*n + 1]); 

     } 
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   } 

} 

Here is a sample of TestDFT results: 

f[0] = 0.0Xr[0] = -1.1275702593849246E-16  Xi[0] = 0.0 

f[1] = 0.5Xr[1] = -4.5102810375396984E-17  Xi[1] = -6.505213034913027E-17 

f[2] = 1.0Xr[2] = -5.898059818321144E-17  Xi[2] = -3.426078865054194E-17 

f[3] = 1.5Xr[3] = 3.469446951953614E-17  Xi[3] = -1.5872719805187785E-16 

 

Highly efficient algorithms for computing the DFT were first developed in the 1960s. 

Collectively known as Fast Fourier Transforms (FFTs), they all rely upon the fact that the 

standard DFT involves redundant calculation. Strictly speaking, there is no such thing as ‘the 

FFT’ 
3
. Rather, there is a collection of algorithms with different features, advantages, and 

limitations. An algorithm which is suitable for programming in a high level-language on a 

general purpose computer may not be the best for special purpose DSP hardware. What the 

different algorithms have in common is their general approach – the decomposition of the DFT 

into a number of successively shorter, and simpler, DFTs.  

 

There are various ways of explaining FFT decomposition. We can show that a DFT can be 

expressed in terms of shorter, simpler DFTs by dividing the signal x[n] into subsequences. This 

method which is widely used in DSP literature is also referred to as conventional decomposition.  

There is also an alternative approach known as index-mapping. It should be clear in our mind 

that conventional decomposition and index mapping are just two ways of looking at the same 

problem and there is no essential difference between them.  

 

Suppose there is a signal with N sample values, where N is an integer power of 2. We first 

separate x[n] into two subsequences, each with N/2 samples. The first subsequence consists of 

even number points in x[n], and the second consists of odd number points- Writing n = 2k, when 

n is even, and n = 2k + 1 when n is odd.  This can be expressed as the original N-point DSP in 

terms of two N/2 point DFTs. The decomposition can be taken further, by breaking each N/2- 

point subsequence down into two shorter, N/4-point subsequences. The process can continue 

until there is only a series of 2-point subsequences, each of which requiring a very simple 2-

pointDFT. A complete decomposition of this type gives rise to one of the commonly used radix-

2, decimation in time, FFT algorithms. 

 

The students can implement FFT as a Java method. It is called the fastFFT( ) method and is also 

defined in the Fourier class. 

  

 

public class Fourier { 

public static void fastFFT(double[ ] fdata, int N, boolean fwd) { 

  double omega, tempr, tempi, fscale; 

  double xtemp, cosine, sine, xr, xi; 

  int i, j, k, n, m, M; 
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  j=0; 

  for(i=0; i<N-1; i++) { 

   if (i<j) { 

    tempr = fdata[2*i]; 

    tempi = fdata[2*i + 1]; 

    fdata[2*i] = fdata[2*j]; 

    fdata[2*i + 1] = fdata[2*j + 1]; 

    fdata[2*j] = tempr; 

    fdata[2*j + 1] = tempi; }  

  k = N/2; 

  while (k <= j) { 

   j  -=  k; 

   k >>= 1; } 

  j  += k; 

  } 

 if (fwd)  

  fscale = 1.0; 

 else  
  fscale = -1.0; 

 M = 2; 

 while( M < 2*N ) { 

  omega = fscale*2.0*Math.PI/M; 

  sin = Math.sin(omega); 

  cos = Math.cos(omega) - 1.0; 

  xr = 1.0; 

  xi = 0.0; 

  for (m=0; m<M-1; m+=2) { 

   for (i=m; i<2*N; i+=M*2) { 

                        j = i + m ;  

    tempr = xr*fdata[j] - xi*fdata[j+1]; 

    tempi = xr*fdata[j+1] + xi*fdata[j]; 

    fdata[j] = fdata[i] - tempr; 

    fdata[j+1] = fdata[i+1] - tempi; 

    fdata[i] += tempr; 

    fdata[i+1] += tempi; }  

  xtemp = xr; 

  xr = xr + xr*cos - xi*sin; 

  xi = xi + xtemp*sin +xi*cos; 

  } 

 M *=2; 

 }  

 if( fwd ) { 

  for (k=0; k<N; k++) { 

   fdata[2*k] /= N; 

   fdata[2*k + 1] /= N; 

  } 
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 } 

     } 

 

In the next step, the students apply this method to compute the FFT on a 2Hz cosine wave, 

whereby 64 data samples were taken over a 2-second sample period. The program first computes 

the FFT to obtain the frequency spectrum for a 2Hz cosine wave.  Then the program below was 

used by students to perform an inverse Fourier transform that reconstructs the 2Hz cosine wave 

from its frequency spectrum. Next, they implemented the FFT as another Java method. It is also 

called the fastFFT(  ). They tested the fastFFT( ) by applying it to the composite cosine signal 

that was processed earlier. The amplitude time history for a signal containing three different 

frequency components is generated and sent to the fastFFT () method. The TestFFT class source 

code is shown below: 

public class TestFFT { 

public static void main(String args[ ]) { 

 int N = 64; 

 double T = 1.0; 

 double tn, fk; 

 double fdata[ ] = new double[2*N]; 

  

 for(int i=0; i<N; ++i) { 

  fdata[2*i] = Math.cos(8.0*Math.PI*i*T/N) +                                 

Math.cos(14.0*Math.PI*i*T/N) +                 

    Math.cos(32.0*Math.PI*i*T/N); 

  fdata[2*i+1] = 0.0; 

  } 

Fourier.fastFT(fdata, N, true); 

System.out.println(); 

for(int k=0; k<N; ++k) { 

 fk = k/T; 

System.out.println(  "f["+k+"] = " + fk + " Xr["+k+"] = " + fdata[2*k] + " Xi["+k+"]  

                                                                                                       = " + fdata[2*k+1]) ; 

             } 

        } 

} 

 Here are the sample partial TestFFT results:                                                                                                   

f[0] = 0.0 Xr[0] = 14.118483415068333 Xi[0] = 8.299076200364345                                                           

f[1] = 1.0 Xr[1] = -4.320681943456142 Xi[1] = -11.70913283509337                                             

f[2] = 11.5931285252644 Xi[2] = 11.382484516157067                                                               

f[3] = 3.0 Xr[3] = 0.20410293867180673 Xi[3] = -9.83647671361791                                                        

…                              

f[60] = 60.0 Xr[60] = 0.012868248913439052 Xi[60] = 0.058867631665321246 

f[61] = 61.0 Xr[61] = -0.20682636511072414 Xi[61] = 0.025288953333891355 

f[62] = 62.0 Xr[62] = -0.03895429084677146 Xi[62] = -0.007474788441969488 
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f[63] = 63.0 Xr[63] = 0.02651390602928162 Xi[63] = 0.0 

 

On most computers, only some of the total computation time of an FFT is spent performing the 

FFT butterfly computations- determining indices, loading and storing data, computing loop 

parameters and other operations consume the majority of cycles. Careful programming that 

allows the compiler to generate efficient code can make a several-fold improvement in the run-

time of an FFT. The best choice of radix in terms of program speed may depend more on 

characteristics of the hardware (such as the number of CPU registers) or compiler than on the 

exact number of computations.     
 
As stated earlier Gabor functions are the functions which best represent signals in the time-

frequency domain in the sense that they possess the smallest product of effective duration by 

effective frequency width. The MP algorithm efficiently decomposes a signal into waveforms 

that belong to a dictionary of functions which include the Gabor functions known as time-

frequency atoms. 

 

MP is an iterative procedure which can be best described as follows: 

1. Find (in the dictionary) the first function that best fits the signal. 

2. Subtract its contribution from the signal. 

3. Repeat these steps on the remaining residuals, until the representation of the signal in 

terms of chosen functions is satisfactory. 

 

The onset and propagation of partial complex seizures are evolving and dynamic 

processes. Complex partial seizures
1 0

 frequently originate from mesial temporal lobe 

structures, but can also originate from the lateral temporal neocortex as well as 

extratemporal regions. Accurate localization of complex partial seizures is of 

particular importance in the treatment of individuals  with complex partial  seizures, 

particularly when surgical resection is being considered since the  surgical approach  

to a patient with  mesial temporal  lobe epilepsy is much different  than  that  for 

t h e  p a t i en t  w i t h  seizures originating  from neocortical  regions, either temporal or 

extratemporal. Because of the patterns of seizure onset, evolution and propagation 

may differ depending upon the region.  

 

A review of the literature reveals that a good number of researchers have applied the MP method 

in analyzing routine EEG, ictal scalp EEG, sleep EEG, and evoked potentials. The application 

of MP analysis to continuous segments of seizure activity recorded from intracranial depth 

electrodes in patients with seizures originating from mesial temporal structures is discussed 

here. This case study was selected for our students because it demonstrates the 

suitability of the MP analysis for entire seizures and because the study specifically examines 

the periods after seizure onset, when the dynamics of the signal are typically rapidly 

changing.   

 

Methods of Data Acquisition 
 

Data from patients monitored 
7
 prior to seizure surgery for intractable complex 
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partial seizures were analyzed. All patients had intracranial EEG (icEEG). 
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P
age 23.886.17



 
 

 
Experimental Setup and EEG Signal Analysis 
 
A typical experimental setup for EEG signal analysis 

7
 simulated in the laboratory is described 

next. Figure 6 was selected from the case study to illustrate the selected segments of a complex 

partial seizure originating from the mesial temporal structures and recorded with combined 

depth electrodes and a 32-contact subdural grid array are illustrated (patient l). Two 6-

contact  depth electrode arrays pass through the grid and with the deepest contacts  Al  and 

Hl   H2 residing in the amygdala  and hippocampus and the most superficial contacts (e.g.  

A6  H6) at the lateral  temporal neocortex. 

 

Note that the seizure begins nearest the deepest hippocampal contacts (Hl H2) and 

subsequently spreads to regionally involve the temporal lobe. To facilitate  

illustration  only  three  depth  electrode  contacts   (those  nearest  the seizure onset)  

and three representative subdural grid contacts  (two  Tl7   T23) from the anterior  

region  one  ( T32) from the posterior  region of the 32-contact  grid) are shown.  

Panel A shows 20 seconds of intracranial EEG (ICEEG) that includes the later  

portions  of the period of seizure initiation (INI; the low voltage fast activity  was 

preceded by some periodic spiking  not shown)  and the period of transitional 

rhythmic activity (TRA) l4 seconds. Panel B  continuous  with A  shows 20 seconds 

of ICEEG  showing the initial 20 seconds of organized rhythmic activity (ORA)   

Panel C is 20 seconds of ICEEG late in the seizure  beginning 40 seconds after panel 

B and illustrates the pattern of intermittent bursting activity (IBA) frequently seen 

at the conclusion of a seizure.  

 

Decisions to perform intracranial monitoring were based on needs for functional mapping of 

eloquent cortex for e.g. language mapping of the dominant temporal lobe and seizure 

localization. Only seizures from patients having good mesial temporal location of depth  

electrodes  as confirmed by  MRI   were included. All nine patients selected for this case 

study had seizures with mesial temporal onset as determined by visual inspection of the 

combined recordings in Fig 6.  

 

For this case study, 
7
 a 64 channel video-EEG recording system (64-channel Telefactor 

MODAC) was used to digitize and store the EEG signals at a rate  of 2 samples per 

second.  For these MP analysis recordings from the depth electrode contact showing 

the earliest seizure onset were selected. The entire seizure was analyzed in each 

instance. A low pass digital filter with a 50 Hz cutoff frequency was employed. For 

display purposes the MP decompositions were typically computed until 9% of the 

energy was represented. 
 

The next program 
8
 demonstrates the power of java’s advanced GUIs and Graphics. In this 

program JLPViewer.java, an array of strings is created consisting of the names of the EEG 

images. We also want the user to select only one EEG (item) image at a time from pJL 

(pictureJList), so we list pJL to single selection mode by using the method setSelectionMode 

together with the constant ListSelectionModel.SINGLE_SELECTION.  
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When the user selects an image from pJL, the program displays the corresponding EKG image 

using the JLabel object dPicJL (displayPictureJList). We use the class ImageIcon and create an 

array of images which include eeg1, eeg2, eeg3, eeg4, eeg5 etc. 

There are five items in the JList. When the program executes, it displays only three of these 

image items in the list at a time. Therefore , we want to attach a vertical scroll bar to the JList 

object pJL, so that user can scroll to select an EEG not currently shown in the list. We set the 

pane layout to null and specify the size and location of the GUI components. These statements 

are provided in the complete program listing given next. 

// JLPViewer.java                                                                                                                              

// JLPViewer application   

// version 1.00 2013/01/04 

  

import java.awt.* ; 

import java.awt.event.* ; 

import javax.swing.*; 

import javax.swing.event.*; 

 

public class JLPViewer extends JFrame implements ListSelectionListener { 

   private String[] pNames = {"eeg 1", "eeg 2", "eeg 3", "eeg 4","eeg 5" } ; 

   private ImageIcon[] pics = {new ImageIcon("eeg1.gif"),new ImageIcon("eeg2.gif"),new 

ImageIcon("eeg3.gif"),new ImageIcon("eeg4.gif"),new ImageIcon("eeg5.gif")}; 

    private BorderLayout lBL ; 

    private JList pJL ; 

    private JScrollPane sJS ; 

    private JLabel promptJL ; 

    private JLabel dPicJL ; 

    private JLabel infoJL ; 

    public JLPViewer( ) 

    { 

     super ("EEG Viewer"); 

     Container pane = getContentPane(); 

     pane.setLayout(null); 

     promptJL = new JLabel(" Select an Electroencephalogram",  

                        SwingConstants.CENTER); 

     promptJL.setSize(350,10); 

     promptJL.setLocation(10,10); 

     pane.add(promptJL); 

     pJL = new JList(pNames); 

     pJL.setVisibleRowCount(3); 

     pJL.setSelectionMode(ListSelectionModel.SINGLE_SELECTION); 

     pJL.addListSelectionListener(this); 

     sJS = new JScrollPane(pJL); 

     sJS.setSize(350,60); 
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     sJS.setLocation(10,20); 

     pane.add(sJS); 

     dPicJL = new JLabel(pics[4]) ; 

     dPicJL.setSize(350, 350) ; 

     dPicJL.setLocation(10,50) ; 

     pane.add(dPicJL) ; 

     infoJL = new JLabel(pNames[4],SwingConstants.CENTER); 

     infoJL.setSize(350, 20) ; 

     infoJL.setLocation(10, 380) ; 

     pane.add(infoJL) ; 

     setSize(480, 540) ; 

     setVisible(true); 

     setDefaultCloseOperation(EXIT_ON_CLOSE); 

    } 

    public static void main(String args[]) 

    { 

     JLPViewer pV = new JLPViewer(); 

    } 

    public void valueChanged(ListSelectionEvent e ) 

    { 

     dPicJL.setIcon( 

      pics[pJL.getSelectedIndex() ]); 

     infoJL.setText( 

      pNames[pJL.getSelectedIndex() ]); 

     repaint() ; 

    } 

   } 

 

Students were introduced early only to object based programming with Java, but also to basic 

concepts of discrete Fourier, fast Fourier Transforms, continuous and discrete time Wavelet 

Transforms, and MP algorithm. Having being exposed to this Java programming, DFT, FFT, 

Wavelet transform learning module has far reaching implications. Advances in technology and 

the widespread availability of powerful computing devices have given a new meaning to the term 

applied signal processing for real world applications as such recording and analysis of electrical 

activity of the human brain was the fascinating chosen context for this paper. 

 

Conclusion 

End of the course survey and diagnostic quizzes demonstrated the enhanced student 

understanding of DSP material which is again attributed to early exposure of Matlab scripting, 

Java Object Oriented Programming and the reinforcement of DFT, FFT, Wavelet transforms and 

EEG component analysis to which they had been exposed later on during their junior and senior 

years.  The authors wish to stress that this paper is no attempt to challenge previous clinical or 

diagnostic knowledge. It is hoped that the concepts covered in this paper will instigate future 

research and development in the field. It will potentially enhance the significant clinically related 

previously applied methods for EEG analysis and thereby aid aspiring student researchers and 

physicians to optimize and ultimately provide more cost effective and efficient diagnostic tools.    

P
age 23.886.20



 
 

 

 

 

 

Bibliography 

 
1. Muqri, M., Shakib, J., A Taste of Java-Discrete and Fast Fourier Transforms, American Society for 

Engineering Education, AC 2011-451. 

2. Shakib, J., Muqri, M., Leveraging the Power of Java in the Enterprise, American Society for Engineering 

Education, AC 2010-1701. 

3. Mallat, S., Zhang, Z., Matching pursuit with time-frequency dictionaries, IEEE Trans. Signal Process., 41, 

1993, 3397-3415. 

4. Rangayyan, R., Biomedical Signals analysis. A case-study approach, IEEE Press on Biomedical Signals. 

Calgary, Alberta, Canada, 2002 

5.    Feichtinger, H., Strohmer, T., Gabor Analysis and algorithms: Theory and applications, Editors. Birkhauser,  

       Boston, 1998. 

6.    Blinowska, K., Durka, P., The  application of wavelet  transform and matching  pursuit to the time- 

       varying EEG  signals,  in Intelligent Engineering Systems Through Artificial Neural Networks,   

      Editors, Dagli & Fernandez, volume 4, pp. 535-540, ASME Press,  New York, l994.                                        

7.    Franszczuk, P., Bergey, G., Durka, P., Eisenberg, H., Time frequency analysis using the matching pursuit            

        algorithm applied to seizures originating from the mesial temporal lobe, Journal of Electroencephalography  

        and Clinical Neurophysiology, volume 106, pp.513-521, Elsevier, 1998.                                                                  

8.     Deitel, H.M., Deitel, P.J., Java How to program, Prentice Hall, 2003.      

9.     Palmer G., Technical Java - Developing Scientific and Engineering Applications, Prentice Hall, 2003.                                                                             

10.   Sanei, S., Chambers, J., EEG Signal Processing, John Wiley & Sons, Ltd, West Sussex, England, 2007.               

11.   Greenfield, L., Geyer, J., Carney, P., Reading EEGs, Lippincott, 2010.                                                                                               

12.   Schomer, D., Lopez da Silva, F., Niedermeyer’s Electroencephalography Basic Principles, Clinical,  

        Applications, and Related Fields, Lippincott, 2011.                                                                                                      

13.  Skill Modules, Advanced Physical Diagnosis Learning and Teaching at the Bedside, Department of Medicine,         

       University of Washington,  http://depts.washington.edu/physdx.html                                                                          

14.  ZhijunGu, NI Biomedical Start up Kit 3.0, July 2010, https://decibel.ni.com/content/docs/DOC-12646 

 

P
age 23.886.21


