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Construct Validity of the EPICS Scales across Groups: A MIMIC 

Modeling Investigation 
 

Abstract 

Using the Multiple Indicators, Multiple Causes (MIMIC) modeling approach, this 

study focused on the investigation of the construct validity of the Engineering Projects in 

Community Service (EPICS) program evaluation instrument. Possible differential item 

functioning (DIF) among the observed items were detected and described. The extent to 

which EPICS students’ gender and major are related to their evaluation on the 

professional skills and outcomes defined by the Accreditation Board for Engineering and 

Technology’s Engineering Criteria 2000 (ABET EC2000) Criterion 3 was analyzed. 

Results indicated that the instrument has acceptable construct validity evidence, and in 

general gender and major were not predictive of students’ noncognitive measures (e.g., 

communication and teamwork skills) on the EPICS program evaluation subscales. 

Background and Theoretical Framework 

        First established at Purdue University in 1995, the EPICS program aimed to 

integrate engineering undergraduate student teams into local community service multi-

disciplinary service learning projects. Within EPICS program, teams of undergraduates 

design, build, and deploy real systems to solve engineering-based problems for local 

community service and education organizations
1
. It is now operating at 15 universities 

nationwide with over 1350 students participated
1
.  

        Accreditation Board for Engineering and Technology’s Engineering Criteria 2000 

(ABET, 1999) Criterion 3 2  Programs Outcomes and Assessment specifies outcomes 

college graduates are expected to know and demonstrate from accredited engineering 

programs. The generality of Criterion 3 objectives require engineering programs to 

articulate desired program outcomes related to professional skills that the participants can 
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assess through self-report instruments. In recognition of this complex task, EPICS ABET 

EC 3 self-report instruments were developed by a team of engineering educators and 

psychometricians to measure students’ perception of their professional skills and 

performance and whether an engineering design course effectively promotes the program 

and Criterion 3 outcomes 3 . Engineering educators will benefit from understanding 

students’ professional skills level, because critical information will be provided regarding 

students’ overall perception of the program and a foundation for continuous improvement. 

Validity is a critical aspect in testing and measurement. It deals with the meaning 

of a test or instrument, i.e., what is the test supposed to measure and how well it does the 

job it claims to do. “Construct” is an informed, scientific idea developed or constructed to 

describe or explain behavior (i.e., intelligence, anxiety, self-esteem, aggression, etc.). 

Construct validity asks the question of to what extent the test measures the theoretical 

construct we are interested in. Test or item bias is a factor inherent within a test or item,  

which has systematically error and prevents accurate, impartial measurement of the 

object or individual. A test/item is considered biased and thus lacking of construct 

validity evidence if it is in favor of or against a certain group of individuals. Construct 

validity can be assessed through factor analysis using the Structural Equation Modeling 

(SEM) technique. The Multiple Indicators, Multiple Causes (MIMIC) model is a special 

application of SEM. The general form of a MIMIC model involves some unobserved 

latent variables “caused” by several x-variables and indicated by several observed y-

variables 4 . The model equations are 
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ελη +=y  

ςγη += x'   

where ),,,(' 21 pyyyy Λ=  are indicators of the latent variable η , and 'x = ),,,( 21 pxxx Λ  

are the “causes” of η . If combining the two equations above by substituting the second 

one into the first one, we have 

ελςλγ ++= xy '  

                                                             = Πx + z 

 

Thus, Π = λγ΄ and εψλλ Θ+= ')(zCov , where )(ςψ Var=  and εΘ  is the diagonal 

covariance matrix of ε .  

As one type of structural equation modeling method researchers have when 

investigating multiple-group differences on a latent construct 5 , MIMIC modeling is 

critical to validation research. It can be used to (a) fit a theoretical model to a set of data 

via confirmatory factor analysis (CFA), thus assessing a test’s construct validity, (b) 

determine whether groups differ in terms of their latent variable means, and (c) 

investigate potential measurement bias in the measures of these latent variables 6 . MIMIC 

modeling is especially useful for current research for the following reasons: (1) it works 

better for small samples 9,8,7 , as opposed to other CFA methods, such as multisample CFA, 

because there is no need to divide the sample into different groups (e.g., gender or 

ethnicity groups) which requires the sample size be large enough in each group for 

accurate parameter estimates, (2) the regular factor analysis analyzes the covariance 

matrix involving only the response variables, which might not capture the difference 

across background groups 10,9 . The inclusion of background variables provides MIMIC 

modeling with important extra information, which enables the researchers to investigate 

the hypothesis of construct validity and invariance across the sub-population 8 , (3) gender 
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(Male or Female) and major (Engineering or Non-engineering) were included as 

covariates in current research to investigate if they are predictive of EPICS scale scores. 

Using ordinary least-squares regression by directly regressing the observed composite 

score onto dummy coded background variables will lead to biased regression results 

because of the measurement error in the observed composite score 11 . In MIMIC 

modeling, the error terms of the observed indicators are included in model parameter 

estimation.  

Although the MIMIC modeling approach has been used considerably in certain 

areas like Epidemiologic studies 13,12 , no research has applied this multiple group 

comparison technique to check potential item bias of a set of noncognitive measures used 

within the context of engineering education. Thus, the purposes of the current study were 

to use MIMIC modeling to (a) assess the construct validity of the EPICS noncognitive 

scales via CFA, (b) determine if groups (gender or major) differ on latent means, and (c) 

test potential gender or major bias of measured variables (observed individual items). 

Method 

Participants. The sample was obtained from the 264 students (32% females, 68% 

males) registered in EPICS program at a major Midwestern U.S. university during the 

2005-2006 academic year. Among these students, 75% were in Engineering-related 

majors (e.g., Electronic Engineering or Civil Engineering), while the rest of 25% were 

from non-engineering majors. 

Instrumentation. All data were based on students’ self-ratings on the instrument 

designed by a team of engineering educators and psychometricians at the same institution. 

This self-report instrument aimed to conceptualize and measure specific professional 

skills of the EPICS students, and evaluate whether an engineering design course 
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effectively promotes the program and Criterion 3 outcomes. Previous study reported the 

detailed process of scale construction and validation 3 . The ABET Criterion 3 outcomes 

were formally defined based on theory, empirical evidence, Criterion 3, and the goals of 

the engineering program. The following eight subscales were included: social-

responsibility, design process, awareness of ethical issues, teamwork, lifelong learning, 

oral skills, written skills, and communication competence. For each subscale, students 

record their responses on a 5-point Likert scale (e.g., 1=strongly disagree to 5=strongly 

agree). The higher the score is, the more the EPICS students agree that the specific 

engineering design course effectively promotes the program and ABET Criterion 3 

outcomes related to their professional skills. The students also took a questionnaire with 

eighteen demographic questions (gender, race, etc.) along with the survey. Items were 

reviewed by faulty from the College of Engineering and the College of Education to 

establish content validity. Item analysis was used to delete, modify and replace poorly 

performed items (e.g., low item-total correlation or item discrimination). All subscale 

Cronbach alphas were at or above .90, indicating good reliability and that the scales 

provided consistent scores. The construct validity of the scales has been supported by 

methods of confirmatory factor analysis 3 . 

 Data Analysis. LISREL 8.53 was used to estimate the MIMIC model. PRELIS 

was used to estimate the joint unconditional covariance matrix of the underlying variables 

and the covariate and its asymptotic covariance matrix 4 . A polychoric covariance matrix 

of the EPICS subscale scores with maximum likelihood estimation was created as input 

for the analyses due to the fact that all the items are ordinal in nature. Demographic 

variables (gender and major) served as covariates or the multiple causes individually to 
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investigate latent mean differences and potential sources of item bias. The analyses in this 

study were conducted in two major steps. First, CFAs were conducted to fit the one-

factor theoretical models to the data. Parameters were estimated and several fit indices 

were used to examine the fit of the models: Satorra-Bentler’s (S-B) chi-square statistic 

(χ
2
)14 , ratio of chi-square to degrees of freedom (χ

2
/df), Root Mean Error of 

Approximations (RMSEA), and Comparative Fit Index (CFI). The chi-square to degrees 

of freedom ratio with values less than 3.00 indicates good fit 15 . The RMSEA measures the 

discrepancy between the actual and estimated variance-covariance matrix per degree of 

freedom, with values equal to or less than .05 indicating good model fit 17,16 . The CFI 

provides a measure of the discrepancy between a restricted and null model in relation to 

the fit of the null model, with values above .90 suggesting adequate fit 19,18 .  

Second, MIMIC models were specified and estimated to investigate the potential 

gender or major bias for each individual item. The differential effects of each covariate 

can be investigated by checking if the direct path from the covariate to each observed 

item is statistically significant 13 . Figure 1 displays a path diagram showing an example of 

a MIMIC model for the oral skills subscale.  
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Figure 1: Conceptual Path Diagram for MIMIC Model incorporating a single latent factor 

(oral) with a single covariate (gender).  

 
    

A direct effect of the covariate to an indicator suggested that variance in the 

measure was explained by group membership in addition to the latent trait 9,8,7 . The 

loading of the direct effects was considered to be statistically significantly different from 

zero if the ratio between the parameter estimate and its standard error exceeded two 13 . A 

direct effect indicates that the subscale contains variance associated with group 

membership beyond that explained by the latent trait, and latent mean differences 
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between groups may be confounded by measurement bias. The standardized difference d̂  

was used as an effect size to measure the magnitude for significant group effects 5,20 ,  

                       

2

1

1

1

)](ˆ[

ˆ
ˆ

ζ

γ

V
d i=

 

where, γ is the path between the covariates (e.g., gender) and observed indicators and 

)(ˆ
1

ζV  is the pooled within-group factor variance (e.g., latent factor oral). 

Results 

Confirmatory Factor Analysis. Table 1 reports the summary of model fit indices 

from the CFAs. The data fit the CFA models adequately well. Although the Satorra-

Bentler’s (S-B) chi-square statistic (χ
2
) of several subscales were large, the model-data fit 

was viewed acceptable due to the following reasons: (1) the chi-square statistic (χ
2
) was 

significantly affected by the sample size, (2) other model-data fit statistics performed 

very well and (3) previous study provided similar findings on CFA studies. Thus, these 

CFA models were used as the baseline models when testing the direct effects in the 

MIMIC models.  

Table 1. Summary of CFA Model-fit Indices 

Fit Indices  

oral written learning ethics com design social team 

S-B χ
2
  

(df) 
   

12.56 

 (9) 

6.43 

 (5) 

48.64 

 (35) 

11.54 

 (9) 

199.79 

(117) 

315.90 

(189) 

380.44 

(151) 

103.57 

(87) 

Χ
2
/df 1.4 1.3 1.4 1.3 1.7 1.6 2.5 1.2 

RMSEA  0.03 0.03 0.04 0.03 0.05 0.05 0.07 0.03 

CFI 0.99 0.99 1.00 0.99 0.99 0.93 0.99 0.99 
Note. oral=oral skills, written=written skills, learning=lifelong learning, ethics=awareness of ethical issues, 

com=communication competence, design=design process, social=social responsibility, team=teamwork. 

 

MIMIC Model Analysis. Table 2 and Table 3 report the summary of MIMIC 

model fit indices for covariates gender and major, respectively. The overall fit of the 

model is acceptable, except for the social and team subscales which were not shown in 

the table because of invalid solutions.  
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Table 2. Summary of MIMIC Model-fit Indices with Covariate gender 

Model Fit Indices  

oral written learning ethics com design 

S-B χ
2
  

(df) 

38.69  

(14) 

14.22 

(9) 

62.68  

(44) 

22.67  

(13) 

302.92 

(126) 

338.64 

(208) 

χ
2
/df 2.7 1.6 1.4 1.7 2.4 1.6 

RMSEA  0.08 0.04 0.04 0.05 0.07 0.05 

CFI 0.99 0.99 0.99 0.99 0.98 0.99 

 

Table 3. Summary of MIMIC Model-fit Indices with Covariate major 

Model Fit Indices  

oral written learning ethics com design 

S-B χ
2
  

(df) 

34.39  

(14) 

11.05 

(9) 

58.41  

(44) 

25.39  

(14) 

311.22 

(133) 

337.67 

(209) 

χ
2
/df 2.4 1.2 1.3 1.8 2.3 1.6 

RMSEA  0.07 0.03 0.03 0.05 0.07 0.05 

CFI 0.99 0.99 0.99 0.99 0.98 0.93 

     

Table 4 shows those items with significant direct effects (with |t-value| > 2) from 

the covariate gender (alpha=.05). In this table, the Path Estimate was interpreted as the 

standardized regression coefficient (direct effects) from the covariate gender to the 

observed indicators. For instance, the direct effects from gender to item E5 in ethics 

subscale—I am aware that when gathering information for a product design, it is critical 

to consider the potential effects (e.g., safety, public health) of the product was -0.194 (|t-

value| = 2.108), indicating potential bias against males: females (coded as zero in the 

covariate gender) were more likely to positively endorse this Likert scaled item, after 

conditioning on the latent variable of ethics. When major served as the covariate, 

however, engineering majors did not tend to score significantly different on any observed 

item than non-majors. 
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Table 4. Estimates of Direct Effects from Covariate gender to Potential Biased Items 

Items with Significant 

Direct Effect (α=0.05) 
gender 

Subscale Item Path Estimate Standard Error t-value 

ethics Item 5 -0.194 0.092 -2.108 

Item 3 -0.179 0.085 -2.100 

Item 4 -0.178 0.085 -2.098 

Item 6 -0.235 0.084 -2.794 

Item 9 -0.230 0.085 -2.712 

Item 13 -0.215 0.088 -2.460 

Item 14 -0.237 0.089 -2.678 

Com 

Item 15 -0.192 0.088 -2.189 

design  Item 13 -0.287 0.090 -3.203 

 

    Table 5 reports the latent factor means differences. The path from gender to each 

latent factor indicated that female group generally had a higher latent means on all the 

subscales except on oral and design. The parameter from major to each subscale showed 

that students majored in Engineering generally had a lower latent mean score on all three 

subscales than those non-engineering majored respondents except on design. Effect sizes 

were found small (.01 - .12). 

Table 5. Path from Covariates to Latent Factors and Effect Size Measures 

gender major 
Latent Factors 

Path Estimate Effect Size Path Estimate Effect Size 

oral  0.01 0.01 -0.06 0.01 

written -0.09 0.10 -0.03 0.03 

learning -0.08 0.10 -0.02 0.02 

ethics -0.11 0.12 -0.03 0.03 

com -0.05 0.07 -0.09 0.08 

design  0.02 0.02  0.02 0.02 

 

 

Discussion 

Results indicated that the EPICS scales showed: (a) evidence of strong reliability 

and (b) evidence of acceptable construct validity based on CFA model-data fit. Nine 

items were found to have significant direct effects from covariate gender, thus 

confounding the interpretation of latent mean differences and indicating potential 
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measurement bias. Because seven of these nine items belonged to the communication 

scale, it may be tempting to conclude that male engineering students should be 

encouraged to take additional communication courses. However, it is unknown to what 

degree these items (a) may be more difficult for male in a variety of majors, and (b) if 

males actually differ on the latent trait. That is, with the presence of direct effects, 

especially on so many items in the scale, latent mean differences are not interpretable. 

Females and non-engineering majors generally had higher latent means, respectively, 

although the size effects were small. Considering the need and difficulty in recruiting and 

retaining female engineering students, these findings are of particular interests because 

they appear to perform at least as well as males on ABET EC 3 criteria – at least those 

females who participate in the EPICS program. 
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