
Paper ID #33674

BYOE: An Evaporative Cooler with Virtual Connectivity

Prof. Ahmet Can Sabuncu, Worcester Polytechnic Institute

Dr. Sabuncu holds a Ph. D. in Aerospace Engineering from Old Dominion University. Dr. Sabuncu’s
professional interests spans from engineering education research, history of science and engineering,
thermo-fluids engineering, and microfluidic technology. Dr. Sabuncu is eager to discover next gener-
ation workforce skills and to educate next generation of engineers who will carry industry 4.0 forward
considering the needs of the global world.

Prof. John M. Sullivan Jr, Worcester Polytechnic Institute

Professor John Sullivan joined WPI in 1987. He has had continuous external research funding from 1988
thru 2013. He has graduated (and supported) more than 75 MS and PhD graduate students. He has served
as the ME Department Head and in 2012 was elected Secretary of the Faculty through 2015. Prof. Sullivan
has always maintained a full teaching load. He strongly supports the WPI project-based undergraduate
philosophy.

Miss Kerri Anne Thornton, Worcester Polytechnic Institute

Kerri Thornton is in the Class of 2024 at Worcester Polytechnic Institute in Massachusetts. She has not
yet declared a major but is interested in pursuing engineering.

Dr. Maqsood Ali Mughal, Worcester Polytechnic Institute

Maqsood Ali Mughal was born in Karachi, Pakistan, in April 1986. He received a B.S. degree in Elec-
tronic Engineering in 2008 from Sir Syed University of Engineering and Technology, Karachi, and the
M.S. degrees in Engineering Management and Environmental Sciences in 2010 and 2014 from Arkansas
State University (A-State), Jonesboro. He then received his Ph.D. degree in Environmental Sciences at
A-State Optoelectronic Materials Research Laboratory (OMRL)-College of Engineering with doctoral re-
search focusing upon synthesis of thin film semiconductor materials for photovoltaic applications. His
research interests revolves around investigating next-generation materials (sulfides, chalcogenides, metal
oxides) for use as solar cell materials to reduce the cost and toxicity, while increasing energy conversion
efficiency. I am also interested in exploring possibility of using these materials for aerospace, biomedi-
cal, and other applications. In addition, I have recently been fascinated by the emergence of 3D printed
electronics for wide range of applications and have been building drones for environmental use as well as
launching high altitude balloons for collecting atmospheric data and measuring environmental pollution
at different atmospheric levels. Jan 2015, Dr. Mughal joined the Electrical Engineering Department at
A-State as a faculty and worked for about an year before joining Fitchburg State University as an Assistant
Professor of Electronics Engineering Technology program. In 2018, he joined Worcester Polytechnic In-
stitute as an Assistant Professor. Dr. Mughal was a recipient of Best Graduate Student Award for the ASU
College of Engineering in 2010. In the same year, he received the LRCSI Ray Echols Scholarship, while;
he was also a Student Entertainment Chairmen for the American Society for Quality (ASQ)-Northeast
Arkansas, Section 1415NEA Student Branch (ASU). He has presented his work in more than 25 confer-
ences including prestigious conferences like IEEE PVSC, TechConnect, EMC, etc. all over United States
of America. He won 2 first prize awards for oral presentations, both at the Arkansas Academy of Science
(AAS) in 2011 and 2012. He has several publications (both conference proceedings and journal) related
to his research on electrodeposition of semiconductor materials for solar energy application. He is also
a professional member of IEEE, NSPE, IAENG, etc. and review papers for SolarEnergy, The European
Physical Journal Applied Physics (EDP Sciences), and IEEE Industrial Application Society.

c©American Society for Engineering Education, 2021

BYOE: An Evaporative Cooler with Virtual Connectivity

ABSTRACT

One of the challenges in online education is enabling experimentation and laboratory-oriented

coursework in an online environment. In this Bring Your Own Experiment session, we introduce

an experimental setup that enables remote-learning students to gain thermodynamics-related

technical skills. We use a setup that has an evaporative cooler to teach these skills. The setup

incorporates a clear polycarbonate tubing that houses an evaporative cooler pad, an axial fan that

continuously blows air onto the pad, and sensors to measure thermodynamic properties upstream

and the downstream of the pad. The evaporative pad is kept wet by maintaining a continuous

perfusion of water via a peristaltic pump. Sensors include temperature and humidity sensors. The

sensors are connected to a microcontroller that has a Wi-Fi connectivity. All sensor data and a

camera feed, which shows the experimental setup, are fed into a cloud storage using Internet of

Things technology while the experimental setup is kept at our institution. Basically, with this

apparatus, the data flows from the microcontroller to a Google sheet, and students remotely

access this data. The remote students calculate the efficiency of the evaporative cooler and find

the efficiency for the given volumetric flow rate and evaporative pad setup. This experiment is

conducted as a part of a junior-level engineering experimentation course in a technological

university.

The deliverable of this experiment is a short report that requires the students to obtain the

learning objectives associated with,

• the use of a psychrometric chart to find the wet bulb temperature, and

• the components associated with calculating the cooling efficiency,

We implemented this experimental setup as one of the possible student laboratory exercise in an

engineering experimentation course. We had nine students complete this optional assignment in

a class of 89 students. We measured student engagement with a survey and analyzed student

work. Students liked the mode of data acquisition and student success was high. We believe this

methodology is particularly important when delivering experimentation remotely, including our

current pandemic situation.

INTRODUCTION

College education is an enabler. It enables fulfilling one’s dreams and economic prosperity at a

larger scale. However, due to ever-increasing costs of higher education, a discrepancy exists in

accessibility to higher education. Only 1 in 10 people in low-income families get a college

degree that is in sharp contrast to 5 in 10 people in high-income families [1]. Between 1985 and

2018, the cost of average tuition of 4-year private higher education institutions has doubled when

costs are adjusted by purchasing power over years [2]. While there is also an increase in the total

amount of financial aid awarded to students, the average federal and state financial aid combined

was around 25% of the average tuition cost of 4-year institutions in 2018 [3]. Online education

can provide a solution to ever-increasing tuition costs, making colleges more accessible for low-

income families. Online education can also accommodate the changing student profile, such as

those of a student working part-time or a veteran, which require flexible schedules and location

to learn [4].

One component of engineering education that has not yet been translated into online settings is

experimentation and laboratory-oriented studies, which are traditionally conducted in

laboratories equipped with high-end instruments. These laboratories are utilized in situ to

achieve relevant learning outcomes. In virtual laboratories students can use computers [5] or

virtual/augmented reality equipment [6] to be “virtually” present in a simulated lab. However,

high-quality virtual/augmented reality equipment is expensive, and these laboratories only

simulate models. Therefore, students don’t gain psychomotor skills, and they are not exposed to

unprecedented conditions (noise, for example) of actual labs. In another modality, students

convert their personal dwellings into laboratories to do experiments with equipment that they

purchase from online merchants or received from the instructor [8]. In this modality, however,

the experiments are limited by the availability of the materials to the students. In remote

laboratories such as what we are proposing here, students electronically connect to a physical

setup at an institution to conduct experiments or observations.

Today, remote laboratories use the Internet of Things (IoT) technology to connect physical

setups to the web, although this technology is still relatively new. For instance, study by

Clemente et al. uses IoT technology to create a remote lab that could be shared by multiple

universities [8]. TU Dortmund University uses a tele-operated robotic arm to do standardized

material characterization tests [9]. While the internet has allowed connection of knowledge

around the world, it depends on a person to react on the information. The IoT has been

developed in the recent years [10]. Preceding technologies such as RF-ID and Barcode are

similar to IoT as these enable connection of objects. These objects could be sensors, motors, or

everyday objects such as light switches, thermostats, and washing machines.

In this paper, we describe a remote experiment that targets teaching thermodynamics-related

technical skills involving an evaporative cooler. Students connect to this setup using IoT

technology and acquire data, while the setup is maintained at our institution. In this experiment,

an instructor must be present in the laboratory to initiate the experiment. Students do not control

the experiment as they observe the experiment and download data for analysis. In this pilot

study, we are only interested in one-way data transfer between the setup and students. Two-way

data transfer, which enables student control of the setup, is not addressed here. Our learning

objectives include study of thermodynamic properties of air and calculation of evaporative cooler

efficiency. A distinctive feature of our setup is that the total cost of setup to the university is less

than $200 and essentially costless to the students if they have a computer with internet

connection. The low-cost nature of our work could make experimentation and laboratory-based

engineering education more accessible. We present exploratory pilot results of this teaching

activity and students’ perception of the experiment.

LEARNING OUTCOMES

This exercise is used to teach students the use of psychrometric charts. Students apply the

information that they look up from the psychrometric chart to calculate the efficiency of the

cooler. After completing this laboratory exercise, students should be able to:

• Use the psychrometric chart to determine wet bulb temperature using other

thermodynamic properties.

• Apply thermodynamic properties to calculate cooling efficiency for an evaporative

cooler.

While we use IoT as tool for achieving the above learning outcomes, it is not our intent to teach

the use of IoT in engineering.

DESCRIPTION OF THE EXPERIMENT

Evaporative cooling is probably one of the oldest cooling techniques. Porous pottery has been

used to keep water cool as evidenced by frescoes from about 2500 B.C [11]. Human dwellings

in hot and arid climates have been kept cool since the ancient times using this process.

Evaporative cooling is even a part of homeostasis. Once triggered by excessive body

temperature, sweat glands discharge water at the skin to maintain a set body-core temperature.

These are all possible thanks to large latent heat of water (ℎ𝑓𝑔 = 2257 kJ/kg at 1 atm).

Evaporative cooling requires a wet bulb depression, essentially a difference between wet and dry

bulb temperatures. While such a condition is not required for vapor-compression and

adsorption-based cooling, evaporative cooling requires dry conditions for atmospheric air.

Evaporative coolers, which are also known as swamp coolers, use a material that is constantly

kept moist, and air is blown on this material.

The setup described here is a small-scale evaporative cooler. The authors (henceforth referred to

as “we”) created the experimental setup. We started with a 2 in by 2 in square acrylic duct with a

12V DC fan attached to one end, shown in Figure 1. The other end was left open. In the center of

the acrylic duct, we cut two rectangular slots, which are on the top wall and on the bottom wall,

to allow for insertion of a 6 in long strip of evaporative pad. The pad is secured at the slots, and it

is centered in the acrylic duct. The top end of the evaporative pad was flush against the top wall

of the acrylic duct, so that a 3D printed water diffuser piece would sit level on the top of the

acrylic duct. This allowed the water coming in from the water pump to run through the small

holes drilled into the bottom of the diffuser and soak into the evaporative pad evenly. The other

end of the pad was allowed to extend beyond the bottom wall of the acrylic duct and was

suspended into a bucket of water to increase the amount of water absorbed into the pad. With the

pad saturated, the fan is turned on, causing room temperature air to be blown through the duct

and pad. The air emerging from the other side of the duct is cooler in temperature and higher in

humidity, thanks to the process of evaporative cooling.

The heat and mass transfer at the evaporative pad decreases the dry bulb temperature of the room

air. As a result, the dry bulb temperature approaches the wet bulb temperature. Considering

these, the efficiency is given as [12],

𝜀𝑒 =
𝑇𝑑,𝑟𝑜𝑜𝑚−𝑇𝑑,𝑐𝑜𝑜𝑙𝑒𝑟

𝑇𝑑,𝑟𝑜𝑜𝑚−𝑇𝑤,𝑟𝑜𝑜𝑚
 . (1)

In Eq (1) 𝑇𝑑,𝑟𝑜𝑜𝑚 and 𝑇𝑑,𝑐𝑜𝑜𝑙𝑒𝑟 are the dry bulb temperatures for room air and air at the

downstream of the evaporative pad, respectively. 𝑇𝑤,𝑟𝑜𝑜𝑚 is for the wet bulb temperature of the

room air. Students use sensor data for determining 𝑇𝑑,𝑟𝑜𝑜𝑚 and 𝑇𝑑,𝑐𝑜𝑜𝑙𝑒𝑟 . They use the relative

humidity of the room air and 𝑇𝑑,𝑟𝑜𝑜𝑚 to determine 𝑇𝑤,𝑟𝑜𝑜𝑚 via the psychrometric chart for

atmospheric air. Given the flow rate of the fan (7 CFM) and the type of the evaporative cooling

pad, the efficiency of the cooler was around 34% in an experiment. We measured the angular

speed of the fan that resulted in 6700 RPM. The air flow speed was 3.5 m/hour in a single

experiment as measured by an anemometer.

Figure 1. Square acrylic duct with fan, sensors, evaporative pad, water diffuser, and water

The setup also has two data acquisition units. We used an Arduino MKR 1010 board to collect

data from the sensors. This data was transmitted to an online server. A Raspberry Pi was used

with an 8-megapixel camera that continually livestreamed the video of the setup to a website.

This was achieved by implementing a code (appendix-A) on the Raspberry Pi. Essentially, this

code created a unique website using the Raspberry Pi’s IP address, and then used the Raspberry

Pi camera to stream a live feed to it. The livestream can be accessed by anyone, notably students,

using a web link. This feature allowed students to remotely view the setup in real time, just as if

they were working in the lab in person. An instructor is present to initiate the setup. The

Fan in 3D
printed holder

Open
end

3D printed
water
diffuser

Water
from
water
pump
(not
shown)

Top wall

of duct

Top end of
evaporative pad

Sensor
measuring

air in duct

Sensor
measuring
air out of

duct

Bottom wall of duct
Bucket of water

instructor fills the bucket with water, makes sure the evaporative pad is primed with water, and

turns the fan on. However, the instructor does not need to be present during the livestream.

According to our experience, under normal conditions, the experiment can last a minimum of 2

days before the instructor turns off the fan. The content from the livestream is shown on the

Raspberry Pi’s monitor in Figure 2. The Arduino MKR 1010 board is also interfaced to and

powered by the Raspberry Pi.

Figure 2. Raspberry Pi setup includes a camera, monitor and other peripherals to control the

entire setup. We noticed a temperature increase in the Raspberry Pi, and therefore, a cooling

fan is included.

The Arduino board has two DHT22 sensors connected. These sensors consisting of a thermistor

and a capacitive humidity sensor, report temperature and relative humidity at 0.5 oC and 2-5%

accuracy, respectively. These two sensors were installed in our acrylic duct, with one sensor

Raspberry Pi

Raspberry Pi
Camera

Cooling fan

Tripod

Monitor

Keyboard

Connection to
Arduino

reading these thermodynamic properties of air at the downstream of the evaporative pad, and the

other reading the properties room air. While the former sensor is inside the conduit, the latter

sensor is attached on the exterior of the top wall of the conduit. The data from these two sensors

were then sent by the Arduino to a Google Sheets by use of a free service known as Temboo

(https://temboo.com/), which affords a streamlined way to connect sensors to the internet.

Briefly, Temboo allows users to easily connect their physical setup to an Application

Programming Interface (API), which is essentially the ‘middleman’, which sends information

back and forth between a user and a server. We were able to use this API to send our sensor data

to Google Sheets, so that each time the sensors recorded data (once every 30 seconds), Temboo

sent this data through an API to Google Sheets. Students were then able to open the Google

Sheets to access and record the measurements taken for use in their calculations. The data in the

spreadsheet included dry bulb temperature and relative humidity of room air and air at the

downstream of the evaporative pad. Students then use these variables to calculate the direct

saturation efficiency (𝜀𝑒) of the evaporative cooler. The code implemented on the Arduino board

for measuring and sending data is shown in the appendix (appendix-B). For reference, a

recording of the temperature at the downstream of the evaporative pad is given in Figure 3. This

graph also shows the time scale associated with the transient cooling in the setup. It only takes

about 30 s to cool down air down to a steady temperature with the setup described here. The

entire bill of materials for this setup is given in Table I.

We offered this activity as an optional assignment in our engineering experimentation course.

This engineering experimentation course is online, and students use take home kits to perform

experiments. The optional assignment also had a short, recorded lecture on evaporative cooling

and on the use of psychrometric charts. In this assignment, the instructor initiated the

experimental setup, and after the initiation of the experiment, students were given 24 hours of a

time window to observe the experiment and acquire data. It takes approximately 5 minutes for a

student to observe and acquire data. After 24 hours, the instructor stops the system. In the current

form of this technology, students must participate in the experiment real-time.

Table I. Bill of Materials

Product Name Quantity Description/Additional

Details

Place of Purchase

1) Raspberry Pi 4 Computer

Model B 1GB Ram
1

2) Raspberry Pi Camera

Board V2 - 8 Megapixels
1

Camera for streaming from

Raspberry Pi
Adafruit

3) USB-C Power Supply 1 Power supply for Raspberry Pi CanaKit

4) 7” HDMI 1024x600 LCD

Screen Display
1

Includes Micro HDMI Cable,

which is used to connect
SunFounder

5) Half-size Breadboard 1
Connects Arduino to sensors

and Raspberry Pi
Adafruit

6) DHT22 Temperature

Humidity Sensor Module
2

Temperature / humidity

sensors
Amazon

7) Arduino MKR WiFi 1010 1

8) Low-Voltage Equipment-

Cooling Fan

12V DC with Wire Leads,

1.57" Square x 0.39" Deep

Overall, 7 CFM

1 Fan for inside acrylic duct McMaster-Carr

9) 2" OD x 1-3/4" ID Clear

Extruded Square Acrylic

Tubing

1 US Plastic Corp

10) INTLLAB DIY

Peristaltic Liquid Pump

Dosing Pump

1 Water pump Amazon

11) INTLLAB 3mm ID x

5mm OD Peristaltic Pump

Flexible Hose

1 Tubing for water pump Amazon

12) Evaporative Cooling

Media, 21 in Height, 13 in

Width, 1/8 in Depth

1 Evaporative cooling pad Grainger

13) Standard USB computer

mouse
1 Connects to Raspberry Pi

14) Standard USB computer

keyboard
1 Connects to Raspberry Pi

15) Standard computer fan

with stand
1

Used to externally cool down

Raspberry Pi

16) Standard camera tripod

stand
1 Modified to hold Raspberry Pi

17) Standard clear tape 1

Used to hold one DHT22

sensor from moving on top of

acrylic duct

18) Standard electric tape 1
Used to hold breadboard in

place

19) Standard plastic bucket 3

One used to suspend acrylic

tubing over bucket of water;

one used to hold water

reservoir for water pump; one

used to hold any water leaking

from pump

20) Standard zip-ties (x4) 1

Used to suspend water pump

over plastic bucket in case of

leakage

21) Standard breadboard

male/male jumper wires
6

22) Standard breadboard

female/female jumper wires
6

23) Standard 12V power

adapter
1

Used to power water pump and

fan inside acrylic duct

24) 3D printed mount for fan

inside acrylic duct
1

3D printed by

Kerri Thornton

25) 3D printed water diffuser 1

Disperses water from water

pump evenly across top face of

evaporative pad

3D printed by

Peter Hefti

Figure 3. Transient temperature at the downstream of the evaporative pad. The temperature

starts at the room temperature and cools down to a lower value when the cooler was turned on.

When cooler was turned off the temperature raised back to the room temperature.

METHODS

We conducted a pilot study to explore whether students could master the two learning outcomes

for the course from home with the water cooler experiment. The course had 89 students in total

and 9 students took this optional assignment. The students wrote a short report detailing their

calculations, use of psychrometric chart, and the input parameters.

The assignment also included a survey to gauge students’ experience. The questions in the

survey were:

• Q1: How would you rate your overall experience with ME 3902 Internet of things (IoT)

Engineering Experimentation (Evaporative Cooler)?

• Q2: The IoT lab exercise (evaporative cooler) was designed such that you could complete

the project work at home. How likely are you to do a similar experiment from home vs.

in-class/laboratory?

• Q3: Do you think having the ability to conduct experiments at home helped (or could

help) you to learn the engineering experimentation material better?

Student responses for Q1 and Q2 were on a Likert scale (1 to 10), Q3 was a True or False

question.

RESULTS

Students used the psychrometric chart accurately and calculated a meaningful cooling efficiency

in general. We had only one student not able to calculate the efficiency correctly, due to incorrect

assessment of the room wet-bulb temperature. These 9 students that completed this optional

assignment, had received an “A” for their overall efforts in this course.

The average response to Q1 was 9.1, indicating a pleasant experience with the assignment

overall. For Q2, the average response was lower, at 7.2. The Likert scale of Q2 had 0

corresponding to unpleasant experience at home (don't like doing IoT exercise at home, want to

see the setup in real time) while 10 corresponded to pleasant experience at home (like doing IoT

exercise at home). All student responded True for Q3.

We also asked students for their comments. One student expressed a concern on the reliability of

the data that the student acquired in the take home experiments of the course. The same student

later added that by populating data in an IoT powered spreadsheet, students can have a better

understanding what the data should look like. This comment by the student led us think that an

IoT exercise, such as the one in the present study, could be used to guide students on the

accuracy of data before students conduct their own experiments. IoT exercises require a well-

thought setup with calibrated sensors, such that, the data acquired by the students could serve as

model data.

The current pilot study has some limitations. The survey results included responses from only a

subset of the entire student body in the course. Therefore, the results could include bias, and they

should only be considered as providing emergent themes to suggest further study. We plan to

continue to assess the utility and feasibility of the course design and further determine the impact

on students in future research.

CONCLUSIONS

This study was a first trial of an IoT powered student activity for engineering experimentation at

our institution. The learning outcomes were relatively low level and only included the use of

tools rather than creative expression. This is also evident in the student experience as reported in

the survey results. While there is capacity to control equipment remotely, such as to control the

speed of the fan in the present setup, this study only investigated one-way real time data transfer.

In the future, we would like to develop this technology further such that we could create higher

level activities where students control equipment and evaluate their decisions. This is only

possible if we have two-way connectivity between experimental setups and students’ computers.

This modality will enable students to upload data to a cloud server, which then submits data to an

experimental setup. While the technology used in this paper would not be a tool to facilitate

project-based learning in a remote environment since students could not produce original work,

we believe that student activities enabled with the technology described here can prepare them

for such activities in the form of a pre-laboratory resource. Importantly, activities with remote

connections can help students understand what the accurate data should look like and can help

them enable use of some tools, such as the psychrometric chart as explain in this study.

REFERENCES

[1] U.S. Department of Education, “College Affordability and Completion: Ensuring a Pathway

to Success.” U.S. Department of Education. https://www.ed.gov/college (accessed Mar.

3, 2021).

[2] U.S. Department of Education, “National Center for Education Statistics,” in Digest of

Education Statistics, 2018. [Online]. Available:

https://nces.ed.gov/programs/digest/d18/tables/dt18_330.10.asp

[3] U.S. Department of Education, “Condition of Education,” National Center for Education

Statistics at the Institute of Education Sciences, USA, NCES 2020-144, May 2020.

Accessed: Mar. 2, 2021. [Online]. Available: https://nces.ed.gov/pubs2020/2020144.pdf

[4] U.S. Department of Education, “Chapter One: What is Higher Ed? A Student Prospectus” in

Reimagining the Role of Technology in Higher Education, Office of Educational

Technology, 2017, ch. 1, pp. 6-16. Accessed: Mar. 2, 2021. [Online] Available:

https://tech.ed.gov/higherednetp/

[5] University of Colorado Boulder, “Simulations.” PhET Interactive Simulations.

https://phet.colorado.edu/en/simulations/browse (accessed Mar. 2, 2021).

[6] H.K. Wu, S.W.Y. Lee, H.Y. Chang, and J.C. Liang, “Current Status, Opportunities and

Challenges of Augmented Reality in Education,” in Computers & Education, vol 62, no.

1, pp. 41-49, March 2013. [Online] Available: https://www.learntechlib.org/p/132254/

[7] A.C. Sabuncu and J.M. Sullivan. (June 22-26, 2020). A Project Based Online

Experimentation Course. Presented at 2020 ASEE Virtual Annual Conference. [Online].

Available:

https://www.asee.org/public/conferences/172/registration/sessions?page=2&use_new_foo

ter=true

[8] F.J. García Clemente, L. de la Torre, S. Dormido, C. Salzmann, and D. Gillet (2018)

“Collecting Experience Data from Remotely Hosted Learning Applications,” in: Auer

https://www.ed.gov/college
https://nces.ed.gov/pubs2020/2020144.pdf
https://phet.colorado.edu/en/simulations/browse
https://www.learntechlib.org/p/132254/
https://www.asee.org/public/conferences/172/registration/sessions?page=2&use_new_footer=true
https://www.asee.org/public/conferences/172/registration/sessions?page=2&use_new_footer=true

M., Zutin D. (eds) Online Engineering & Internet of Things (Lecture Notes in Networks

and Systems Series 22). Springer, Cham. https://doi.org/10.1007/978-3-319-64352-6_17

[9] J. Grodotzki, T.R. Ortelt, and A.E. Tekkaya, “Remote and Virtual Labs for Engineering

Education 4.0: Achievements of the ELLI Project at the TU Dortmund University,” in

Procedia Manufacturing, vol 26, pp 1349-1360, 2018. [Online]. Available:

https://doi.org/10.1016/j.promfg.2018.07.126

[10] G. Press. “A Very Short History of the Internet of Things.” Forbes.

https://www.forbes.com/sites/gilpress/2014/06/18/a-very-short-history-of-the-internet-of-

things/?sh=6b76d53b10de (accessed Mar. 2, 2021).

[11] J.R. Watt, “History of Evaporative Cooling,” in: Evaporative Air Conditioning Handbook,

pp. 5-11 1986. [Online]. Available: https://doi.org/10.1007/978-1-4613-2259-7_2

[12] ASHRAE Handbook – HVAC Systems and Equipment, SI Edition, ASHRAE, 2020.

APPENDIX

Appendix-A: Raspberry Pi Code

Web streaming example

Source code from the official PiCamera package

http://picamera.readthedocs.io/en/latest/recipes2.html#web-streaming

code from https://randomnerdtutorials.com/video-streaming-with-raspberry-

pi-camera/ and modified by Kerri Thornton at Worcester Polytechnic Institute

import io

import picamera

import logging

import socketserver

from threading import Condition

from http import server

PAGE="""\

<html>

<head>

<title>Raspberry Pi - Surveillance Camera</title>

</head>

<body>

<center><h1>Raspberry Pi - Surveillance Camera</h1></center>

<center></center>

</body>

</html>

"""

class StreamingOutput(object):

 def __init__(self):

 self.frame = None

https://doi.org/10.1016/j.promfg.2018.07.126
https://www.forbes.com/sites/gilpress/2014/06/18/a-very-short-history-of-the-internet-of-things/?sh=6b76d53b10de
https://www.forbes.com/sites/gilpress/2014/06/18/a-very-short-history-of-the-internet-of-things/?sh=6b76d53b10de
https://doi.org/10.1007/978-1-4613-2259-7_2
http://picamera.readthedocs.io/en/latest/recipes2.html#web-streaming
https://randomnerdtutorials.com/video-streaming-with-raspberry-pi-camera/
https://randomnerdtutorials.com/video-streaming-with-raspberry-pi-camera/

 self.buffer = io.BytesIO()

 self.condition = Condition()

 def write(self, buf):

 if buf.startswith(b'\xff\xd8'):

 # New frame, copy the existing buffer's content and notify all

 # clients it's available

 self.buffer.truncate()

 with self.condition:

 self.frame = self.buffer.getvalue()

 self.condition.notify_all()

 self.buffer.seek(0)

 return self.buffer.write(buf)

class StreamingHandler(server.BaseHTTPRequestHandler):

 def do_GET(self):

 if self.path == '/':

 self.send_response(301)

 self.send_header('Location', '/index.html')

 self.end_headers()

 elif self.path == '/index.html':

 content = PAGE.encode('utf-8')

 self.send_response(200)

 self.send_header('Content-Type', 'text/html')

 self.send_header('Content-Length', len(content))

 self.end_headers()

 self.wfile.write(content)

 elif self.path == '/stream.mjpg':

 self.send_response(200)

 self.send_header('Age', 0)

 self.send_header('Cache-Control', 'no-cache, private')

 self.send_header('Pragma', 'no-cache')

 self.send_header('Content-Type', 'multipart/x-mixed-replace;

boundary=FRAME')

 self.end_headers()

 try:

 while True:

 with output.condition:

 output.condition.wait()

 frame = output.frame

 self.wfile.write(b'--FRAME\r\n')

 self.send_header('Content-Type', 'image/jpeg')

 self.send_header('Content-Length', len(frame))

 self.end_headers()

 self.wfile.write(frame)

 self.wfile.write(b'\r\n')

 except Exception as e:

 logging.warning(

 'Removed streaming client %s: %s',

 self.client_address, str(e))

 else:

 self.send_error(404)

 self.end_headers()

class StreamingServer(socketserver.ThreadingMixIn, server.HTTPServer):

 allow_reuse_address = True

 daemon_threads = True

with picamera.PiCamera(resolution='640x480', framerate=24) as camera:

 output = StreamingOutput()

 #Uncomment the next line to change your Pi's Camera rotation (in degrees)

 #camera.rotation = 90

 camera.start_recording(output, format='mjpeg')

 try:

 address = ('', 8000)

 server = StreamingServer(address, StreamingHandler)

 server.serve_forever()

 finally:

 camera.stop_recording()

Appendix-B: Arduino Code

#Code generated by Temboo

#define TEMBOO_DEVICE_TYPE "a101+w101"

#define WIFI_SSID "WPI-Open"

#include <SPI.h>

#include <DHT.h>

#include <WiFiNINA.h> //was #include <WiFi101.h>

#include <WiFiSSLClient.h>

#include <TembooSSL.h>

#define TEMBOO_ACCOUNT "" // your Temboo account name

#define TEMBOO_APP_KEY_NAME "" // your Temboo app key name

#define TEMBOO_APP_KEY "" // your Temboo app key

#define DHTPIN2 2

#define DHTPIN3 3

#define DHTTYPE DHT22

DHT dht1(DHTPIN2,DHTTYPE);

DHT dht2(DHTPIN3,DHTTYPE);

WiFiSSLClient client;

int calls = 1; // Execution count, so this doesn't run forever

//int maxCalls = 10; // Maximum number of times the Choreo should be

executed

void setup() {

 Serial.begin(9600);

 dht1.begin();

 dht2.begin();

 // For debugging, wait until the serial console is connected

 delay(4000);

 //while(!Serial);

 int wifiStatus = WL_IDLE_STATUS;

 // Determine if the WiFi Shield is present

 Serial.print("\n\nShield:");

 if (WiFi.status() == WL_NO_SHIELD) {

 Serial.println("FAIL");

 // If there's no WiFi shield, stop here

 while(true);

 }

 Serial.println("OK");

 // Try to connect to the local WiFi network

 while(wifiStatus != WL_CONNECTED) {

 Serial.print("WiFi:");

 wifiStatus = WiFi.begin(WIFI_SSID);

 if (wifiStatus == WL_CONNECTED) {

 Serial.println("OK");

 } else {

 Serial.println("FAIL");

 }

 delay(5000);

 }

 Serial.println("Setup complete.\n");

}

void loop() {

 //if (calls <= maxCalls)

 {

 Serial.println("Running AppendValues - Run #" + String(calls++));

 TembooChoreoSSL AppendValuesChoreo(client);

 // get the number of milliseconds this sketch has been running

 unsigned long now = millis();

 Serial.println("Getting sensor value...");

 // get the value we want to append to our spreadsheet

 //unsigned long sensorValue = getSensorValue();

 float humidityData1float = dht1.readHumidity();

 float humidityData2float = dht2.readHumidity();

 float celData1float = dht1.readTemperature();

 float celData2float = dht2.readTemperature();

 float fehrData1float = dht1.readTemperature(true);

 float fehrData2float = dht2.readTemperature(true);

 float hicData1float = dht1.computeHeatIndex(celData1float,

humidityData1float, false);

 float hicData2float = dht2.computeHeatIndex(celData2float,

humidityData2float, false);

 float hifData1float = dht1.computeHeatIndex(fehrData1float,

humidityData1float);

 float hifData2float = dht2.computeHeatIndex(fehrData2float,

humidityData2float);

 //print out data readings to serial monitor

 Serial.print("humidityData1:");

 Serial.print(humidityData1float);

 Serial.print("celData1:");

 Serial.print(celData1float);

 Serial.print("fehrData1:");

 Serial.print(fehrData1float);

 Serial.print("hicData1:");

 Serial.print(hicData1float);

 Serial.print("hifData1:");

 Serial.print(hifData1float);

 Serial.println();

 Serial.print("humidityData2:");

 Serial.print(humidityData2float);

 Serial.print("celData2:");

 Serial.print(celData2float);

 Serial.print("fehrData2:");

 Serial.print(fehrData2float);

 Serial.print("hicData2:");

 Serial.print(hicData2float);

 Serial.print("hifData2:");

 Serial.print(hifData2float);

 //convert sensor readings, which are "float", to "unsigned long" because

Temboo wants that

 unsigned long humidityData1 = (unsigned long)humidityData1float;

 unsigned long humidityData2 = (unsigned long)humidityData2float;

 unsigned long celData1 = (unsigned long)celData1float;

 unsigned long celData2 = (unsigned long)celData2float;

 unsigned long fehrData1 = (unsigned long)fehrData1float;

 unsigned long fehrData2 = (unsigned long)fehrData2float;

 unsigned long hifData1 = (unsigned long)hifData1float;

 unsigned long hifData2 = (unsigned long)hifData2float;

 unsigned long hicData1 = (unsigned long)hicData1float;

 unsigned long hicData2 = (unsigned long)hicData2float;

 // Invoke the Temboo client

 AppendValuesChoreo.begin();

 // Set Temboo account credentials

 AppendValuesChoreo.setAccountName(TEMBOO_ACCOUNT);

 AppendValuesChoreo.setAppKeyName(TEMBOO_APP_KEY_NAME);

 AppendValuesChoreo.setAppKey(TEMBOO_APP_KEY);

 AppendValuesChoreo.setDeviceType(TEMBOO_DEVICE_TYPE);

 // Set Choreo inputs

 String RefreshTokenValue = "1//0dwIBXxP4MS0aCgYIARAAGA0SNwF-

L9IrsvcIXHjGalytU_Zu106Rk3JcmPuDOVvfJzECAaqdhGHbo7IA2JcBnWsnN1YqXxEavDA";

 AppendValuesChoreo.addInput("RefreshToken", RefreshTokenValue);

 String ClientSecretValue = "snhAuvV1cm-0fQZhNlmqIYSF";

 AppendValuesChoreo.addInput("ClientSecret", ClientSecretValue); //was

String ValuesValue = "[[\"128\",\"78\"]]";

 String ClientIDValue = "632132551130-

mldlj3fkv488iipdbk4i856jidoduo3c.apps.googleusercontent.com";

 AppendValuesChoreo.addInput("ClientID", ClientIDValue);

 String SpreadsheetIDValue =

"1m65zoW8xAAS1YdLIC38tV_NaBbAUirs4qkx3XVTBmyc";

 AppendValuesChoreo.addInput("SpreadsheetID", SpreadsheetIDValue);

 // Identify the Choreo to run

 AppendValuesChoreo.setChoreo("/Library/Google/Sheets/AppendValues");

 // convert the time and sensor values to a json array

 String rowData = "[[\"" + String(now) + "\", \"" + String(humidityData1)

+ "\", \"" + String(celData1) + "\", \"" + String(fehrData1) + "\", \"" +

String(hicData1) + "\", \"" + String(hifData1) + "\", \"" +

String(humidityData2) + "\", \"" + String(celData2) + "\", \"" +

String(fehrData2) + "\", \"" + String(hicData2) + "\", \"" + String(hifData2)

+ "\"]]";

 // add the RowData input item

 AppendValuesChoreo.addInput("Values", rowData);

 // Run the Choreo; when results are available, print them to serial

 AppendValuesChoreo.run();

 while(AppendValuesChoreo.available()) {

 char c = AppendValuesChoreo.read();

 Serial.print(c);

 }

 AppendValuesChoreo.close();

 }

 Serial.println("\nWaiting...\n");

 client.stop(); //added this 12/10/20, hopefully will stop the "no socket

available" problem

 delay(30000); // wait 30 seconds between AppendValues calls

}

