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A Statistical Study of Concept Mapping Metrics 

 

Abstract 

This paper reports on our exploratory statistical study of the relationships among a selection of 
traditional and holistic concept mapping metrics. Specifically, twelve traditional metrics (nine 
from the literature and three of our own design) and four holistic metrics (all from the literature) 
were used to evaluate the concept maps of two sets of engineering students: (i) 73 undergraduate 
engineers enrolled in first-year engineering design; and (ii) 52 graduate engineers enrolled in a 
master’s level systems engineering course. Our results showed 41 common correlated pairs 
between these two samples, all at the p<0.05 level of significance. The implications of these 
correlations for engineering educators are discussed, along with potential directions for future 
research to expand this area of study.  
 
1. Introduction 

The use of concept maps in engineering education research is growing, with applications in the 
assessment of knowledge mastery and integration within courses, programs, and across multiple 
disciplines2,7,12,13,14,19,21.  Concept maps are also being used to assess the effectiveness of the 
early stages of engineering problem solving and analysis3. Within these applications, a variety of 
metrics have been developed for assessing concept maps, including both “traditional” and 
“holistic” approaches to measuring the accuracy, breadth, and depth of students’ understanding2.  

In general, traditional metrics rely on counting various elements or features of a concept map 
(e.g., number of concepts, links, or hierarchies) or the computation of map descriptors (e.g., map 
density, map complexity) as functions of these elements. Due to their dependence on relatively 
clear-cut characteristics, traditional metrics are generally considered to be quite objective (i.e., 
different map evaluators are likely to derive the same results). Nevertheless, holistic metrics that 
focus on a more subjective “quality of understanding” represented in a concept map (rather than 
the “quantity” of specific features) have also emerged. These holistic scoring methods include 
structural complexity approaches that assess the dominant structural patterns of concept maps 
(e.g., hub/spoke, tree, network), as well as integrated rubrics based on the organization, 
comprehensiveness, and correctness of map content2,12.  

Despite the wide variety of concept mapping metrics available, very few studies have examined 
the relationships between them in detail. As a result, we have little sense of which metrics (if 
any) are truly independent or whether there is significant overlap between them. In addition, 
without a detailed analysis of the relationships among the available metrics, it is difficult to know 
which metrics might be best at explaining the variance we observe among students’ concept 
maps. We need to have a better understanding of these relationships. To address this need, we 
performed an exploratory statistical analysis to determine if and how the predominant traditional 
and holistic concept mapping metrics are correlated, with the future aim of identifying optimal 
sets of metrics that are most effective for the evaluation of students’ understanding in specific 
situations or contexts.   
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2. Background and Literature Review   

We began our study with a literature review to identify the most commonly used concept 
mapping metrics within educational settings. Previous reviews of concept mapping theory and 
applications include Ruiz-Primo and Shavelson’s investigation of concept map tasks17, response 
formats, and scoring systems, and Besterfield-Sacre et al.’s overview of concept map 
terminology, scoring approaches, and mapping applications in engineering2; both were excellent 
resources. We also examined Bayram’s weighted scoring system based on a map’s hierarchical 
levels, propositions, and branches1, Ruiz-Primo and Shavelson’s work in assessing declarative 
knowledge16, and Turns et al.’s exploration of the breadth, depth, and connectedness of concept 
maps19. From our review, it was evident that while concept mapping is fairly standardized as an 
activity, the metrics used to assess concept maps are less so. The results of our search are 
summarized in Appendix A, where both traditional and holistic approaches to measuring the 
accuracy, breadth, and depth of students’ understanding are shown, along with selected 
references for each metric listed.  
 
As shown in Appendix A, traditional metrics enumerate the features of a concept map, such as 
the number of concepts, propositions, cross-links, concept examples, hierarchies, or the highest 
level of hierarchy achieved – counted separately or in combination, with equal or variable 
weighting2,5,7,14,15,16,19. Other traditional metrics involve the computation of various map 
descriptors (e.g., map density, map complexity, overlap, link similarity) as functions of the 
individual element counts4,6,14. Still others focus on organizational and semantic assessments 
based on connectedness, surface structure, concept usage, and vertex matching, among other map 
characteristics8,11.  
 
Among the holistic metrics for concept maps, two main scoring methods have surfaced in the 
past decade: (1) Kinchin and Hay’s structural complexity approach9,10,12,22, which assesses the 
dominant structural patterns of concepts and links found in a map; and (2) Besterfield-Sacre et 
al.’s integrated rubric based on the comprehensiveness, organization, and correctness of map 
content2. Other holistic scoring methods based on the evaluation of subject understanding on a 
simple scale from, say, 1 to 10 have also been presented2,7,14.  
 
Based on our literature review, we began by choosing nine (9) traditional metrics and four (4) 
holistic metrics to evaluate for each concept map. In addition, based on our desire to investigate 
students’ responses to task structure (a topic that will be addressed in a future publication), we 
defined three more traditional metrics, namely: (i) the number of concepts used from the list of 
concepts provided in the task instructions; (ii) the number of concepts added to the list (by a 
subject); and (iii) the number of concepts unused from the given list. These 16 metrics are listed 
in Table 1, along with the accompanying equations for any computed metrics (e.g., map density).  
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TABLE 1. Concept map metrics used in this study  
Traditional Metrics Holistic Metrics 
Total number of concepts (C) 
Total number of links (L) 
Total number of hierarchies 
Highest level of hierarchy constructed 
Number of cross-links between hierarchies 
Map density = L ÷ [C × (C − 1)] 
Map complexity = L ÷ C 
Number of matching links (with expert map reference) (M) 
Link similarity = M ÷ (L + E − M); E = total # of expert links 
*Concepts used from given list 
*Concepts unused from given list 
*Concepts added to given list 

Dominant structural pattern: Linear, Chain, 
Hub/Spoke, Tree, or Network 

Comprehensiveness 
Organization 
Correctness 

*=New metric defined by the authors.  
 
3. Experimental Methods 

3.1 Concept Mapping Tasks 

As Gregoriades et al.7 have described, there is a range of directedness involved in providing 
information to subjects during concept mapping exercises; this varies from high-directed to low-
directed. High-directed concept map tasks pre-define the specific concepts, connecting lines, 
linking phrases, and map structure involved, while low-directed tasks leave subjects free to 
decide which/how many concepts to include in their maps and how those concepts are related 
(including the propositions used to label each link). In our study, concept mapping tasks were 
moderately-directed, meaning that students were given a list of specific concepts related to the 
map topic, but they were also allowed to add or subtract concepts from that list. No connecting 
lines, linking phrases, or map structures were provided, so students were free to organize the 
concepts in whatever configuration they felt was most appropriate. A sample set of instructions 
(for a systems thinking mapping task) is shown in Figure 1.  
 

 
Figure 1. Task instructions for a systems thinking concept map 

Map #2:  Systems Thinking     Name _________________________________ 

Use the terms listed below to create a concept map of your current understanding of 
Systems Thinking.  You may add and/or delete terms from the list in creating your map. 
Don’t forget to label the links between concepts! Draw the map on this page. 

1. Parts  8. Constraints  11. Inputs 
2. Interactions 9. Information  12. Processes 
3. Systems  10. Energy  13. Constraints 
4. Hierarchy  11. Materials  14. Cycles 
5. Functions  12. Feedback  15. Control 
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3.2 Study Participants 

Our study participants included 73 undergraduate engineering students enrolled in a first-year 
engineering design course (3 sections) and 52 graduate engineering students enrolled in a 
master’s level systems engineering course (2 sections) at Penn State University. Students 
volunteered to participate based on a description of our research project and received no 
compensation for their participation. Each student completed a concept map of a course-related 
topic as a class exercise mid-way through each course; the topics were systems thinking 
(undergraduates) and creativity (graduates), respectively. All students were provided with brief 
instructions about concept mapping and performed at least one “practice map” before completing 
the maps of interest; they were given approximately 30 minutes to complete each mapping task.  
 
3.3 Map Evaluation 

Each map was scored by two independent evaluators, with at least one expert in the subject 
matter; the maps were not graded for formal course credit. When it was required for the 
evaluation of a particular map metric (e.g., matching links), an expert map was provided by the 
course instructor. In cases where evaluators disagreed on a particular metric’s value, a consensus 
opinion was sought through discussion20; when a consensus opinion could not be reached, the 
evaluators’ individual metrics were averaged. The evaluators assessed each map using the 
metrics listed in Table 1; ranges of possible values for these metrics were assigned according to 
original definitions from the appropriate scholarly sources (see Appendix A). As noted earlier, 
we added three traditional metrics to those identified in the literature to assess the number of 
concepts used, unused, and added to the list of concepts provided for each task; the ranges of 
possible values for these metrics were a direct function of the number of concepts provided in 
those lists. Our aim in including these new metrics was based on our interest in how students 
respond to the structure of the mapping task itself, a topic we will take up in a future publication. 
Pearson correlations (95% confidence limit) were performed using Minitab® and Matlab® 
software to determine if and how the map metrics were correlated among and between the 
traditional and holistic subsets. These results are discussed in detail below.  
 
4. Results 

Our analyses revealed 73 statistically significant correlations (p<0.05) for the metrics assessed 
using the undergraduates’ systems thinking concept maps and 60 statistically significant 
correlations (p<0.05) for the metrics assessed using the graduates’ creativity concept maps. Of 
these correlated metrics, 41 pairs were common to both data sets (see Tables 2-4); our discussion 
here will focus on these common correlations. Of these common pairs, 20 were correlations 
among the traditional metrics, 5 were correlations among the holistic metrics, and 16 were 
correlations between traditional and holistic metrics.  
 
Beginning with some general observations: all correlations in Tables 2-4 are of the same sign 
across the two samples, even when their magnitudes are noticeably different. In addition, most of 
the correlations are moderate (0.3<|r|<0.7) to strong (|r|≥0.7), with all |r|>0.23. In most cases 
(30/41=73%), the correlations are higher for the metrics obtained from the graduate creativity 
maps than for the undergraduate systems thinking maps. In particular, of the twenty examples 
where |r|≥0.7, fourteen of these were identified from the creativity maps, while six occurred for 
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the systems thinking maps. We also note that while the strongest correlations occurred between 
traditional metrics, strong correlations were also observed between holistic metrics and between 
traditional and holistic metrics.  
 

TABLE 2. Common correlations (creativity and systems thinking maps) among traditional 
metrics (p<0.05)  

Traditional-Traditional Correlations 
Creativity Systems Thinking 

r p-value r p-value 

Concepts Added Link Similarity -0.396 0.004 -0.236 0.046 

Concepts from list 
 

Unused Concepts -1.000 0.000 -1.000 0.000 
Map Density -0.781 0.000 -0.627 0.000 
Highest Level 0.410 0.003 0.314 0.007 
Link Similarity 0.609 0.000 0.301 0.010 
Matching links (expert map) 0.683 0.000 0.410 0.000 
Total Links 0.813 0.000 0.672 0.000 

Map Complexity Total Cross-links 0.559 0.000 0.691 0.000 
Map Density Highest Level -0.372 0.007 -0.242 0.041 
Matching links (expert map) Link Similarity 0.980 0.000 0.977 0.000 

Total Concepts 

Unused Concepts -0.957 0.000 -0.888 0.000 
Map Density -0.846 0.000 -0.698 0.000 
Highest Level 0.428 0.002 0.344 0.003 
Matching links (expert map) 0.595 0.000 0.254 0.031 
Total Links 0.825 0.000 0.661 0.000 
Concepts from list 0.957 0.000 0.888 0.000 

Total Links 

Total Cross-links 0.387 0.005 0.564 0.000 
Highest Level 0.444 0.001 0.247 0.036 
Map Complexity 0.660 0.000 0.776 0.000 
Matching links (expert map) 0.694 0.000 0.265 0.025 

 
 

TABLE 3. Common correlations (creativity and systems thinking maps) among holistic metrics 
(p<0.05) 

Holistic-Holistic Correlations 
Creativity Systems Thinking 

r p-value r p-value 
Comprehensiveness Organization 0.742 0.000 0.349 0.003 
Hub pattern Tree pattern -0.723 0.000 -0.436 0.000 
Linear pattern Tree pattern -0.312 0.025 -0.267 0.023 
Organization Network pattern 0.696 0.000 0.581 0.000 
Tree pattern Network pattern -0.334 0.015 -0.537 0.000 
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TABLE 4. Common correlations (creativity and systems thinking maps) between traditional and 
holistic metrics (p<0.05) 

Traditional-Holistic Correlations 
Creativity Systems Thinking 

r p-value r p-value 

Concepts from list 
Organization 0.591 0.000 0.234 0.048 
Comprehensiveness 0.789 0.000 0.377 0.001 

Highest Level Hub pattern -0.305 0.028 -0.274 0.020 
Link Similarity Correctness 0.348 0.012 0.639 0.000 

Map Complexity 
Linear pattern -0.453 0.001 -0.257 0.029 
Network pattern 0.516 0.000 0.584 0.000 
Organization 0.587 0.000 0.489 0.000 

Matching links (expert map) 
Correctness 0.340 0.014 0.681 0.000 
Organization 0.493 0.000 0.250 0.034 

Total Concepts Comprehensiveness 0.806 0.000 0.411 0.000 

Total Cross-links 
Network pattern 0.365 0.008 0.729 0.000 
Organization 0.458 0.001 0.624 0.000 

Total Links 

Network pattern 0.418 0.002 0.509 0.000 
Linear pattern -0.359 0.009 -0.275 0.019 
Organization 0.739 0.000 0.496 0.000 
Comprehensiveness 0.835 0.000 0.379 0.001 

 
4.1 Discussion 

A detailed discussion of every correlation and its implications would be impractical here, so we 
will comment on those that are the most “obvious” and those that are most “interesting” (in our 
view). Beginning with the strong correlations (|r|≥0.7) from Table 2, we note first the obvious 
negative correlation (r = -1.0) between ‘concepts from list’ and unused concepts (both traditional 
metrics). As one is equal to the total number of concepts provided to the students for a particular 
topic (a constant) minus the other, this relationship is no surprise. Other correlations involving 
computed metrics and one of their factors include:  

• Matching links and link similarity (strong positive correlations) 
• Total concepts and map density (moderate to strong negative correlations) 
• Total links and map complexity (moderate to strong positive correlations) 

In each of these cases, the direction/sign of the correlation is as expected; for example, as the 
number of total concepts increases, we expect map density (L ÷ [C × (C − 1)]) to decrease, as 
confirmed by the negative correlation we observed.  

Several interesting correlations can also be seen in Table 2, including (a) the moderate positive 
correlations between map complexity and the total number of cross-links, and (b) the strong 
positive correlation between the total number of concepts and the concepts used from the list. In 
the latter case, it is clear that most students relied on the given list of concepts to complete their 
maps, and they used most of those concepts as well.  P
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Moving to correlations involving two holistic metrics (Table 3), the negative correlations among 
the various structural patterns (hub, tree, linear, etc.) are somewhat obvious; if a map is assessed 
as reflecting one pattern, it is less likely to reflect another. We also note the following interesting 
relationships in Table 3:  

• Comprehensiveness and organization (moderate to strong positive correlations) 
• Organization and network pattern (moderate positive correlations) 

As summarized in Appendix A, comprehensiveness is related to a student’s breadth and depth of 
knowledge of the map topic, while organization reflects their systematic arrangement of concepts 
and the hierarchy of concept placement. From our results, it appears that a more systematic 
configuration of concepts and a more comprehensive definition of the subject area may go hand-
in-hand among our students. In addition, network patterns may be perceived as “more organized” 
than the other structural patterns (e.g., hub, tree, etc.).  
 
Finally, moving to correlations involving traditional and holistic metrics (Table 4), the moderate 
to strong positive correlations between ‘concepts from the given list’ and comprehensiveness 
seem fairly obvious, although the difference in magnitude between the two samples (graduates 
and undergraduates) is intriguing. Similar observations hold true for the moderate positive 
correlations between link similarity (also matching links) and correctness, and for the moderate 
to strong positive correlations between ‘total number of concepts’ and comprehensiveness. In 
general, the difference in r values for the graduate and undergraduate samples clearly requires 
further investigation with larger sample sizes to determine the underlying reasons for these 
differences. We might speculate, for example, that they are a function of age/maturity, or they 
may be a result of instructional variations between the two courses. Of course, it is also possible 
that these differences will effectively disappear when larger sample sizes are used.  

In Table 4, we also found the following correlations of interest:  

• Total links and organization (moderate to strong positive correlations) 
• Total links and comprehensiveness (moderate to strong positive correlations)  

In each case, a greater number of links is associated with desirable holistic qualities, i.e., a more 
systematic arrangement of concepts (higher degree of organization) and a more complete 
definition of the subject area (higher level of comprehensiveness). A practical implication of this 
particular finding could be the development of techniques that help students make more 
connections between concepts in their maps, rather than focusing only on the correctness of the 
connections made.  
 
As a further step in our analysis, we grouped our findings based on related correlations that, 
when taken together, lead to several additional observations about students’ concept mapping 
(and map metrics) which may be of interest and/or which deserve subsequent investigation. 
These related correlations and the resulting observations are presented in Table 5. While the 
preliminary nature of this study requires us to remain somewhat tentative in our remarks, the 
exercise is still instructive in providing insights into the ways in which metrics might be 
combined to yield information about student learning via concept maps.  
 
 
 

P
age 23.105.8



TABLE 5. Related correlations and resulting general observations 

Related Correlations (Correlation Strength) General Observations 

Traditional-Traditional Pairs 

Concepts added – link similarity (mod. neg.) 
Concepts from list – link similarity (mod. pos.) 
Concepts from list – matching links (mod. pos.) 

As concepts are added to a student’s map, the 
similarity between the student and expert maps 
decreases, since the expert only utilizes concepts from 
the list. 

Concepts from list – map density (strong neg.) 
Concepts from list – total links (strong pos.) 
 

The number of links and the number of concepts both 
affect map density.  As concepts are added, the 
number of links increases as well, but not always 
enough to increase map density proportionately. 

Map complexity – total cross-links (mod. pos.) 
Total Concepts – highest level (mod. pos.) 

More links indicates a more complex map, which 
would include cross-links. Given the moderate 
correlations here, this may indicate that the students’ 
maps were not highly complex. 

Total concepts – unused concepts (strong neg.) 
Total concepts – concepts from list (strong pos.) 
Total links – map complexity (mod. to strong pos.) 

These correlations show that very few students left out 
concepts from the given list. 

Traditional-Holistic Pairs 

Concepts from list – organization (weak to mod. pos.) 
Concepts from list – comprehensiveness (weak to strong 
pos.) 

These positive correlations indicate that as students 
used more concepts from the given list, the maps 
appeared to have better organization and greater 
comprehensiveness. 

Map complexity – linear pattern (weak to mod. neg.) 
Map complexity – network pattern (mod. pos.) 
Map complexity – organization (mod. pos.) 

These correlations make sense since map complexity 
is increased by more links than concepts.  More links 
are required for the network pattern, while fewer are 
needed for the linear pattern.  Organization requires 
the integration of branches, which implies a network 
pattern. 

Matching links – correctness (weak to mod. pos.) 
Total cross-links – network  pattern (weak to strong pos.) 
Total cross links – organization (mod. pos.) 
Total links – network pattern (mod. pos.)  

Having more cross-links leads to more networks; 
organization is related to integration as well. 
Increased links and increased network patterns,  
coupled with strong correctness and matching links, 
could imply an understanding of the topic. 

Total concepts – comprehensiveness (mod. to strong pos.) 
Total links – organization (mod. to strong pos.) 
Total links – comprehensiveness (weak to strong pos.) 

The correlations for total concepts-comprehensiveness 
and total links-comprehensiveness are similar. As total 
links increase, so do organization and 
comprehensiveness. 

 
Note: The following abbreviations are used within Table 5 for convenience: mod = moderate, 
neg = negative, pos  = positive. 
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5. Limitations, Implications, and Future Work 

The primary aim of this exploratory study was to investigate the statistical relationships between  
concept mapping metrics as a preliminary step toward identifying optimal sets of metrics that 
might be effective in evaluating our students’ understanding in specific situations or contexts. 
Clearly, we are far from our final goal, but we have learned a good deal. In particular, the large 
number of common, statistically significant correlations between metrics from our two samples 
(with all of them in the same direction, and many of similar magnitude) tells us that the metrics 
typically used to evaluate concept maps have some interdependencies. While the small sample 
sizes used in this study limit our conclusions about those interdependencies (which limits, in 
turn, our ability to recommend the use of certain metrics over others), the results are still 
encouraging and suggest an expanded study with larger sample sizes. In light of these findings, 
we also note that markedly different ways of interpreting concept maps may be needed to see if 
other dimensions of meaning can be extracted from them.  

The strong correlations observed within each of the three pairings of metrics (i.e., traditional-
traditional, holistic-holistic, and traditional-holistic) also suggest that the optimal sets of metrics 
we seek may be a combination of traditional and holistic metrics, rather than one type or the 
other. This finding has interesting implications for future research – for example, in the 
development of new holistic metrics to supplement those already in the literature. At present, the 
number of traditional metrics is greater than the number of holistic metrics; the potential power 
of combining the two approaches suggests that this imbalance should be addressed. To support 
this integrated strategy, we are currently developing a detailed set of guidelines for coding 
concept maps using the full spectrum of traditional and holistic metrics discussed in this paper 
that will assist engineering educators in their adoption of a wider range of map assessments.  

Even now, an awareness of the interdependencies among map metrics can help educators choose 
between metrics when assessment efficiency and/or confirmation are important. For example, if 
particular traditional and holistic metrics are moderately to strongly correlated (e.g., total 
concepts and comprehensiveness), then an educator could choose to use the traditional metric 
instead of the holistic metric based on the practical fact that traditional metrics are generally less 
subjective. Or, if an educator wants to confirm the complexity of a student’s knowledge through 
concept mapping, he/she could calculate map complexity (traditional metric) and compare the 
result with the structural pattern and organization of the map (both correlated holistic metrics).  

Finally, the differences in magnitude of the common correlations between our two samples need 
to be explored further. As noted earlier, the correlations were higher for the metrics obtained 
from the graduate creativity maps than for the undergraduate systems thinking maps, but the 
reasons behind this phenomenon are not clear. We might hypothesize that the graduate students – 
who, in this case, are all working adults with an average age of (circa) 30 – are more “settled” or 
“mature” in terms of their thinking patterns, leading to stronger relationships among the map 
metrics, but this is only speculation. In our future work, which will include larger sample sizes 
across a wide range of academic levels and age groups, we hope to answer this question with 
greater certainty.  
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The next steps in our research will also include an investigation of the impact of cognitive 
preferences on students’ mapping outcomes. In particular, a study of the correlations between 
concept mapping metrics (both traditional and holistic) and cognitive style is already underway. 
Understanding the relationships between different concept mapping metrics – and between those 
metrics and the individual cognitive differences of the students who create the maps themselves 
– marks the first steps toward helping educators make informed choices about which metrics 
they use to assess these student outcomes.  
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APPENDIX A. Concept Map Assessment: Review of Scoring Methods, Metrics, and Rubrics 

General Approach Metric / Rubric Element(s) Selected Reference(s) 

Traditional / 
Quantitative  

- Single metrics 

Number of (relevant) concepts 
Number of (valid) propositions 
Number of (appropriate) total cross-links 
Number of examples of specific concepts 
Number of hierarchies 
Highest level of hierarchy achieved 

Novak & Gowin (1984)† 
Dorough & Rye (1997)† 
Besterfield-Sacre et al. 
(2004)†  

Traditional / 
Quantitative  

- Combined metrics 

- Computed metrics 

- Weighted metrics 

Structural scoring methods (combinations of, e.g., number of concepts, hierarchies, total cross-links, 
examples, and/or correct propositions)  

McClure et al. (1999)*† 

Set theoretic method: similarity between two maps (participant and expert) McClure et al. (1999)*  

Relational scoring methods (e.g., propositional accuracy, proportion of valid propositions, link 
descriptions, link directions) 

McClure et al. (1999)*† 
Ruiz-Primo & Shavelson 
(2001)* 
Gregoriades et al. (2009)* 

Weighting of elements counted (e.g., concepts, propositions, levels of hierarchy, etc.) depending on 
importance of the element and/or aim of the experiment  

Turns et al. (2000)*†  
Rye & Rubba (2002)* 
Gregoriades et al. (2009)* 

Map density = (#links) ÷ (#concepts)(#concepts – 1): a measure of concept integration 
Map complexity = (#links) ÷ (#concepts): a measure of map breadth 

Graff (2005)† 

Visualization of concept usage using pattern analysis Gregoriades et al. (2009)* 

Organizational metrics: surface structure, graphical structure, connectedness, ruggedness, avg. degree of 
vertices, number of cycles, vertices 

Semantic content metrics: vertex matching, propositional matching 

Ifenthaler et al. (2011)† 

Overlap analysis: number of shared concepts across multiple maps 

Link similarity: (#shared links between maps) ÷ (union of all links) 

DeFranco, Neill, and 
Clariana (2011)† 

P
age 23.105.13



Holistic / 
Qualitative 

General holistic scoring method: overall understanding of the map topic rated on a scale from 1 to X McClure et al. (1999)*† 
Besterfield-Sacre et al. 
(2004)† 
Gregoriades et al. (2009)* 

Structural complexity: dominant structural pattern of concepts and links 

- Chain/Linear: linear sequence of concepts (no branching) 

- Circular: concepts daisy-chained with the ends joined 

- Hub/Spokes: radial structure in which all the related aspects of the topic are linked directly to the core 
concept, but are not directly linked to each other.  

- Tree: a linear chain with branches attached 

- Net(work): a highly integrated, complex, interconnected set of propositions 

Kinchin, Hay, & Adams 
(2000)† 
Yin et al. (2005)† 
Hay & Kinchin (2006)† 
Hay, Wells, & Kinchin 
(2008)† 
 

Integrated Rubric: 3 categories, 3 levels per category 

- Comprehensiveness: definition of the subject area, level of knowledge in the area, breadth and depth of 
that knowledge 

- Organization: systematic arrangement of concepts, hierarchy of concept placement, connections and 
integration of branches 

- Correctness: accuracy of the material presented (considering level of sophistication, use of appropriate 
terms, any misconceptions) 

Besterfield-Sacre et al. 
(2004)†  

* = with expert/master map; † = without expert/master map 
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