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A Multi-level Diffusion Unit: Connecting Submicro- and Macro-levels with 
Computational, Graphical and Mathematical Representations 
 
Abstract 
This paper describes an undergraduate unit for teaching diffusion as an emergent phenomenon 
using computational models. Previous research has shown that students have difficulties in 
understanding the role of randomness in diffusion and the connection between the micro- and 
macro- level properties. Analysis of learning outcomes from the first version of this curriculum 
showed that the computational representations helped students understand the random-walk 
behavior underlying diffusion, but students still struggled to connect this understanding to the 
macro-level relationships encoded in Fick’s laws. This paper describes the revised curriculum 
that was developed to address this conceptual gap. Future work will analyze learning outcomes 
of students using this revised curriculum.  
 
Introduction 
Diffusion is one of the most important mechanisms of change at the atomic and molecular level. 
It is a central process in materials science and engineering (MatSE) as well as in chemistry, 
chemical engineering, molecular biology, and any other science dealing with atomic scale 
phenomena. Therefore, all students of atomic-scale sciences ideally should acquire a deep 
understanding of diffusion, but such understanding has proven difficult to achieve across age-
groups and subjects [1]–[5]. One core reason for the difficulty is that it is not obvious how the 
macro-scale behavior—net movement of particles from regions of high concentration to regions 
of low concentration—emerges from random-walk behavior at the submicro-scale. This leads to 
“levels-slippage” [6] in which a person assumes the behavior at the submicro-level applies at the 
macro-level or vice versa. In the context of diffusion, downwards levels-slippage means 
incorrectly imputing the behavior at the macro-level onto the micro-level, resulting in a belief 
that atoms move deterministically from areas of high concentration to low concentration. 
Upwards levels slippage can result in confusion as to how random behavior at the micro-scale 
can result in the (approximately) deterministic behavior at the macro-scale. In prior work, we 
have found both examples of levels slippage among undergraduate MatSE majors after taking 
courses on diffusion [5]. The difficulty of understanding diffusion across length-scales can be 
viewed as a microcosm of MatSE as a whole in which the core paradigm is to understand how 
macro-level material properties emerge from micro- or submicro-structures. Accordingly, a core 
goal of our curriculum is to help students develop understanding of emergent behavior across 
length-scales.  
 
Various science education researchers have employed computational models and simulations to 
help students understand physical phenomena from the lens of “emergence.” In contrast to 
equation-based models, which generally describe the macro-level behavior of a system directly, 
agent-based or atomistic models can encode the behavior and interactions of individual elements 
of the system from which macro-level behavior emerges. Such an approach has been 
successfully used across the physical sciences, including chemistry, physics and MatSE [7]–[12]. 
 
In addition to helping students understand systems from an emergent perspective, computational 
atomistic approaches also expose students to computational materials science techniques. There 
is a widespread consensus among academics, national labs and industry that computation will 



play an increasingly important role in MatSE and that both undergraduate and graduate 
education should reflect that [13]–[15]. There are multiple ways to integrate computation into 
MatSE education. One approach taken by several departments is for students to solve problems 
using computational tools designed for research and industry [16]–[21]. The advantage of this 
approach is that students learn to use tools they are likely to encounter in professional settings. A 
second approach is to have students use tools designed for education and/or to have them 
implement computational techniques themselves [8], [22]. The advantage of this approach is that 
students are more likely to gain fundamental understanding of computational models and 
techniques. The two approaches are both valuable and can be complementary, but we opt for the 
second in this curriculum in order to focus on foundational understanding. 
 
This paper describes a diffusion curriculum originally reported on in [5], now updated in 
accordance with the findings of that paper. We recently implemented this updated version but 
have not had time to analyze learning results, as the course is still ongoing. The next section 
describes the theoretical framework guiding the design of the curriculum and summarizes results 
from the first version of the curriculum that motivated changes to this version. This paper 
represents work in progress, and future work will report on student learning outcomes with these 
learning activities.  
 
Theoretical Background: Emergence, Restructurations and Active-Learning 
 
The theoretical framework for our curriculum design revolves around three big ideas. The first, 
already discussed in the introduction, is the focus on emergence and thinking across levels. Our 
goal is for students to understand diffusion behavior at both the submicro-level and the macro-
level and how the latter emerges from the former.  
 
The question of how to help students gain a multi-level understanding leads to the second big 
idea: the external forms we use to represent ideas have a huge impact on how we think and what 
we can do. For example, it took Galileo a full page of text to prove an idea in kinematics that we 
can now prove in a single line using algebra [23]. Without the representational form of algebra, it 
took a scientist of Galileo’s stature to prove things that middle school students can prove with 
algebra. Similarly, the advent of Hindu-Arabic numerals allows elementary school students to do 
calculations like long division that required expert training in the era of Roman numerals [24], 
[25]. Wilensky and Papert use the term “restructurations” of knowledge to refer to such 
fundamental changes in representational form, and these historical examples raise the question as 
to whether we can intentionally design new representations with equally profound effects on 
thinking and learning about subjects that are currently challenging for students [24], [25]. They 
argue that computational, agent-based models have the ability to “restructurate” knowledge 
about emergent phenomena. In agent-based models, the behaviors of individual components 
(micro-level) are programmed explicitly, and macro-level patterns emerge from these behaviors, 
allowing the learner to explore the connection between micro-behaviors and macro-patterns. 
 
Agent-based models usually include multiple representations of the phenomena being modeled at 
different levels. In general, it is almost always necessary to use and coordinate multiple 
representations to understand complex scientific phenomena, including verbal, visual, graphical 
and symbolic representations. Three edited volumes address the importance of multiple 



representations in physics, chemical and biological education [26]–[28]. Our curriculum 
combines computational agent-based representations created in NetLogo (a language and 
modeling environment for agent-based modeling) [29] with more traditional graphical and 
mathematical representations to help students understand the different levels of diffusion and 
their linkages. Figure 1 shows these various representations, including Fick’s 2nd Law (the 
classic differential equation describing diffusion), graphical representations of concentration, a 
computer code representation of random-walk behavior written in NetLogo [29] and a visual 
representation of random-walk behavior. However, simply including multiple representations 
does not ensure that students will actually make links between them [30]. So, our curriculum 
includes activities to help students actively make connections between the various 
representations.  
 
The third big idea guiding our design is that students actively construct their own knowledge and 
understanding. As a result, we try to maximize the amount of time that students are interacting 
with models and discussing with one another to build their understanding. Class time is used for 
these active explorations when instructors can answer questions, and any lecture material is 
delivered via video outside of class time.  
 

 

 
Setting and Summary of Findings from the First Iteration of the Curriculum 
 
The setting for this study is a sophomore-level MatSE course on thermodynamics and kinetics at 
a private research university. It is the third course taken by MatSE majors after an introductory 
MatSE course and a first course in thermodynamics. Student have also taken a year-long 

Figure 1: The multiple representations used in our diffusion unit. In the lower blue region are micro-level 
representations: (left) a symbolic representation of random-walk behavior written in NetLogo code and (right) the 
visual representation of lattice and diffusing atoms generated by NetLogo. The concentration of diffusing atoms is 
represented at the macro-level by a concentration profile, a graphical representation. Fick’s Laws are a 
mathematical representation of the dynamics of how the concentration profile changes in time. 



chemistry sequence and an introductory physics course. We do not assume students have any 
prior computer programming experience, although most have at least a little. 
 
In the first version of the curriculum, students explored initial versions of the random-walk and 
interstitial diffusion models (described below), but these explorations occurred after the 
traditional lectures on Fick’s laws and were not intimately linked to them. We found that 
exploring the models helped students understand random-walk behavior better, but they still had 
difficulty connecting random-walk behavior to macro-level behavior through either graphical or 
symbolic representation (Fick’s Laws) [5]. As a result, we’ve rearranged the curriculum so that 
students start by learning about the submicro-level using computational models and then build on 
this understanding to bridge to the macro-level. In an entirely new activity since the first version, 
students use a graphical representation to qualitatively derive Fick’s laws themselves. We hope 
that this will help students better understand the links between the different levels.  
 
The Learning Goals 
Our primary goal is for students to gain a deep understanding of diffusion. By deep 
understanding we mean that they will: 

1. Understand the submicro-level random-walk behavior of individual particles and be able 
to express this behavior computationally in pseudo-code 

2. Be able to qualitatively predict the macro-level dynamics of concentration profiles (i.e. 
where concentration will increase/decrease) and be able to connect these predictions to 
the symbolic forms of Fick’s Laws 

3. Be able to explain why the macro-level dynamics emerge from the submicro-level 
random-walk behavior 

 
A second goal is to expose students to computational materials science techniques and engage 
them in computational modeling practices by having them explore models and then write small 
extensions for them. We want to give students experiences with exploring, assessing and creating 
models of phenomena, as these are all core parts of science and engineering practice. 
Specifically, we want students to: 

1. Feel confident exploring a model to understand a phenomenon better. 
2. Understand that all models make assumptions and that their validity depends on those 

assumptions holding (e.g. Fick’s Laws are not universally true despite being called 
“Laws”). This is a core aspect of scientific literacy. 

3. Learn to extend and create models. In this case, students write small extensions to an 
existing model. This is an authentic practice, because much of real-world computational 
modeling consists of modifying code written by others.  

 
These learning goals will be assessed in future work through qualitative analysis of student 
exams and interviews with students after the course is over. 
 
The Updated Learning Activities 
The updated unit consists of some short video lectures, three in-class exercises and a homework 
assignment. Each in-class exercise took place during a single 50-minute class period. Students 
who did not finish in that time were able to finish on their own. During in-class exercises, 
students worked together in groups of 2-4 students. Since the course took place during the 



COVID-19 pandemic, all class meetings were conducted virtually over Zoom. Each group of 
students was placed in a breakout room and the instructors rotated through breakout rooms to 
answer questions. At the end of the week, there was also an additional 50-minute recitation 
period for students to ask questions pertaining to the exercises or the homework. The various 
components of the unit are described below.  
 
 
Pre-Class Video Lectures 
As most of the students have never used NetLogo before this course, the students watched a 17-
minute introduction to NetLogo video before the first in-class exercise and answered a few 
simple quiz questions on the video. Before the second in-class exercise, they were asked to 
watch a 12-minute video describing the interstitial diffusion model.  
 
In-Class Exercise 1: Exploring Random Walk  
The goal of the first in-class exercise is for students to become familiar with micro-level random-
walk behavior and the relationship between root-mean-square distance and time for random 
walkers. The exercise starts with students imagining a drunken sailor stumbling around 
randomly. They calculate the probability of him reaching his destination four steps away, along 
with his most likely end position, the total distance he will have walked and the expected 
displacement. These pen and paper exercises are intended to help students understand the basics 
of random walk and expected value. As some students have never had a course in probability, 
this is an important part of the exercise.  
 
Next, students explore a NetLogo model of random walk shown in Figure 2 below. The model 
consists of a variable number of random walkers in one dimension. They all start at x=0 and take 
a step randomly to either the left or the right each time step. The three panels of Figure 1 show 
the random walkers at t=0, t=4 and t=20. The black square shows the position of each individual 
random walker (they are distributed randomly in the y-direction to make it easier to see them 
all). The Displacement Distribution graph shows the distribution of displacements in the x 
dimension and shows the characteristic binomial distribution over time. The NetLogo code used 
to run this model is shown in the bottom right of Figure 2. Each time step, agents are asked to 
face either to the left or the right and then to move forward by 0.5 units. Students predict what 
the distribution will look like and then run the model to check their predictions.  



 

 
 
Next, students are asked to think about a single number that could be used to describe the 
distribution. Students are meant to realize that mean displacement will not work for this purpose, 
because it is always zero. The students are then introduced to the concept of standard deviation 
as a way to describe the width of the distribution and root-mean-square (Xrms) distance as the 
special case when the mean position is zero. They are then given the formula for Xrms and asked 
to program it in NetLogo and plot the result in such a way as to reveal a power law relationship. 
As NetLogo is new to the students, they are given all the commands they will need to calculate 
Xrms, but they have to figure out how to put them together. The result, both the code and the 
graph, are shown in Figure 3 below. On the homework (see below) students are asked to adapt 
this code so that the turtles randomly walk in two dimensions and to see how the Xrms vs time 
graph changes. 

d) 

Figure 2: A NetLogo model of random-walk in 
one dimension. a) Before any random steps b) 
after four random steps c) after 20 random steps. 
d) The core NetLogo code of this random-walk 
model (“turtles” are generic agents in NetLogo) 

a) b) 

c) 



   
 
 

 
In-Class Exercise 2: Exploring Interstitial Diffusion 
The goal of the second exercise is for students to become more familiar with random-walk at the 
micro-level and to connect this behavior to the emergent macro-level behavior of concentration 
profile evolution using both graphical representations and Fick’s laws. This section will first 
describe the model students used and then the learning activities they engaged in. The students 
were given the interstitial diffusion model shown below in Figure 4. Blue circles represent lattice 
atoms (e.g., iron) and yellow circles represent diffusing atoms (e.g., carbon). For simplicity, we 
use a square lattice. Above the atomistic representation is a concentration profile of the diffusing 
atoms aligned in the x-dimension. In the center, where there are few diffusing atoms, the 
concentration is low. Near the boundaries, where there are many diffusing atoms, the 
concentration is high. The buttons and switches on the left side of the interface allow the student 
to control various parameters of the model. The core NetLogo code of the model is also included 
in Figure 4. 
 
The “draw-profile” button allows the user to draw the concentration profile as shown in Figure 5. 
The lattice atoms disappear, and a second concentration profile appears on the atomistic view 
which the user can change by clicking and dragging the mouse. The concentration of diffusing 
atoms adjusts accordingly. This allows the student to explore how arbitrary concentration 
profiles will evolve instead of just a limited set of pre-programmed conditions. The initial 
concentration in Figure 4, shown by the grey line on the concentration profile, is the same as that 
drawn in Figure 5. The yellow line in Figure 4 represents the current concentration profile after 
some diffusion has occurred. Since “constant-left-surface?” switch is set to “true” and the “left-
surface-concentration” slider is set to 1.0, concentration at the left boundary remains at one. On 
the right boundary, the concentration has decreased because the surface is not held at a constant 
concentration. Everywhere else, concentration has changed as would be expected from Fick’s 2nd 
law (with some noise).  
 

Figure 3: (above) the code for 
calculating Xrms. (left) The log Xrms vs log 
time graph is shown on the bottom right 
of the interface. The linear relationship 
reveals a power-law.  



  

Figure 4: A NetLogo model of interstitial diffusion. Blue circles represent lattice atoms and 
yellow circles represent diffusing interstitial atoms. Above the atomistic visualization is a 
concentration profile aligned with the x-coordinates of the atomistic visualization so that 
moving upward from a column of atoms you can read off the concentration at that x position.  
The grey line shows the initial concentration profile, and the yellow line is the current 
concentration profile after some diffusion. Various settings and controls are on the right.  

Figure 5: The model during “draw-profile” mode. Students can click and drag on the 
concentration profile to set an arbitrary initial condition. When they are satisfied with the 
initial condition, they click the “finished-drawing?” switch and press “go”. 



 
Students were first asked to explore the main code of the model (some of which is shown in 
Figure 6) and write in English what one of the sub-procedures inside of the “go” procedure does. 
Next, they ran the model to explore how different concentration profiles change over time. They 
did this by drawing profiles as shown in Figure 5 and then watching the model evolve. They 
were asked to explain what influences the rate of change of the concentration profile and why. 
They were also asked to determine what happens at long times and to explain why. Next, 
students explored changing the boundary conditions by turning constant surface concentrations 
on and off. They again had to describe how this influences the rate at which the concentration 
profile changes and determine the long-term behavior. 
 
After using the model to explore diffusion behavior at the micro-level and connect it with the 
macro-level, students were asked to qualitatively derive Fick’s laws using the diagrams shown in 
Figure 7. The students are meant to fill in all the boxes to determine how the concentration 
profile will change, assuming each particle has a 25% of jumping to the left, a 25% of jumping to 
the right and a 50% of staying put (75% for those on the boundaries). The black boxes represent 
the expected number of particles to jump in each direction. The blue boxes represent the 
expected flux between each x-position and the green boxes represent the expected change in 
concentration at each x-position at the next time step. The first few boxes are filled in on Figure 
7a and the concentration profile at the next time step is shown in Figure 7b, which the students 
were asked to draw themselves. Through this exercise, students qualitatively derive Fick’s first 
law with the blue boxes (flux is proportional to the slope of the concentration profile) and Fick’s 
second law with the green boxes (the change in concentration is proportional to the curvature of 
the concentration profile). The students are then directed to watch a video lecture of a more 
formal derivation of Fick’s laws.  
 
 
 

Figure 6:  The main NetLogo code for the 
interstitial diffusion model. In the “go” 
procedure diffusing atoms are asked to 
random walk and then if there is a constant 
surface concentration on the right or left, it 
gets set. The random-walk procedure 
defines a 2D random walk on a square 
lattice: pick one of the four cardinal 
directions and then if there is an empty 
interstitial site there, jump to it. 



 

 
 
 
In-Class Exercise 3: Boundary Value Problems 
The third, and final, in-class exercise uses the same interstitial diffusion model as the second 
exercise. In this exercise, students use the model to simulate various initial/boundary conditions 
including: 

• Steady-state diffusion:  constant surface concentration on both surfaces, one high and one 
low 

• Draining plate: initial high bulk concentration and a constant surface-concentration of 
zero at both surfaces 

• Multi-layer diffusion: an initial periodic concentration profile 
• Point-source diffusion: A finite quantity of diffusing atoms are initialized near one 

boundary of the material and then diffuse further into the material 
• Constant surface concentration: initially low bulk concentration and one surface is kept at 

constant a high concentration. This models something like a carburization process 
(carbon diffusing into iron to create steel).  

 
Students are asked to sketch their predictions of what the concentration profile dynamics will be 
in each case and then use the model to set up those conditions and test their predictions. They 
then use the model to extract an effective diffusion depth, Xeff, for the constant surface 
concentration condition, defined as the position at which the concentration is halfway between 

Figure 7:  The graph on the left was given to students to qualitatively derive Fick’s Laws and then 
produce a graph like the one on the right. Each yellow circle represents a diffusing atom at a certain x 
position. Each atom has a 25% of jumping in either direction. Students had to first fill in the black boxes 
with the expected number of atoms that would jump in that direction, then fill in the blue boxes with the 
expected flux between two columns (Fick’s 1st law) and finally fill in the green boxes with the expected 
change in concentration for that column (Fick’s 2nd law). The first several boxes are filled in with the 
correct numbers to illustrate what students are meant to do. 



the initial bulk concentration and the surface concentration. They then graph Xeff  vs time to 
discover the power-law relationship between them (the same power-law as the root-mean-square 
distance vs time). 
 
Homework Problem Set 
After the three in-class exercises, the students are given a problem set for homework that 
reinforces and extends what they have learned. The first problem asks students to qualitatively 
determine how a concentration profile will change over time. Then, students extend the random 
walk model from the first in-class exercise to two dimensions instead of one, and they compare 
the root-mean-square distance vs time graph (log Xrms vs log time) for the two cases. Finally, 
students extend the interstitial diffusion model to simulate a new scenario. They are given the 
following topics as suggestions but are free to pick their own as well: anisotropic diffusion, 
temperature-dependent diffusion, diffusion with drift (due to an electric field). Any of these 
topics can be modeled with minor changes to the NetLogo code (usually between one and three 
lines of code). This is where the flexibility of atomistic modeling compared to continuum models 
is most pronounced. Modifying Fick’s laws to account for one of the suggested phenomena 
would be extremely challenging for these students. The agent-based approach allows every 
student to engage in an authentic, albeit simple, model-building exercise.  
 
Future Work 
 
This paper describes the current iteration of our diffusion unit originally reported on in [5]. It is a 
work in progress, as we were not able to analyze student learning outcomes until the course 
finished after the writing of this paper. For that future analysis, we will use a combination of 
video taken during the in-class exercises, student homework, student exams, and interviews with 
students to assess student learning. Those outcomes will be used to determine what further 
changes should be made to the unit to further support students learning about diffusion from an 
emergent perspective, connecting across multiple levels and representations.  
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